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ABSTRACT

Last-mile is the centerpiece of broadband connectivity, as
poor last-mile performance generally translates to poor qual-
ity of experience. In this work we investigate last-mile latency
using traceroute data from RIPE Atlas probes located in 646
ASes and focus on recurrent performance degradation. We
find that in normal times probes in only 10% ASes experience
persistent last-mile congestion but we recorded 55% more
congested ASes during the COVID-19 outbreak. Persistent
last-mile congestion is not uncommon, it is usually seen in
large eyeball networks and may span years. With the help
of CDN access log data, we dissect results for major ISPs in
Japan, the most severely affected country in our study, and
ascertain bottlenecks in the shared legacy infrastructure.
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1 INTRODUCTION

Internet resources are shared among a varied number of users
with diverse demands. The exhaustion of network resources
is the main source of packet loss and increased latency which
usually translates into degraded web services and poor quality
of experience [26]. Understanding causes of Internet conges-
tion and detecting congestion in time and space is, hence,
crucial for maintaining quality of service.

Past studies have exposed the relationship between persis-
tent inter-domain congestion and under provisioned links [7,
17], and between transient in-network congestion and routing
mishap [11]. For broadband users, home and last-mile net-
works are the main bottlenecks [25]. Last-mile networks are
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also a susceptible to transient self-induced congestion [12, 24]
and a key factor to quality of experience [26]. Nonetheless, a
recent analysis of access networks in US and UK reveals that
last mile latency is usually stable and features no recurrent
congestion [3]. On the contrary, our study shows that for
some Autonomous Systems (ASes) last-mile congestion may
be a pervasive and perpetual problem. Hence, this paper
complements the literature by documenting persistent last
mile congestion, that is, congestion close to users’ premises
that repeatedly appears over an extended period of time.

Using RIPE Atlas, we conduct an exploratory survey of
last-mile latency in 646 Autonomous Systems (ASes). We
find that Atlas probes located in 90% of monitored ASes ex-
hibit no consistent last-mile congestion but some probes with
persistent last-mile congestion are usually located in large eye-
ball networks and congestion may recur over years. We also
show that the number ASes hosting congested Atlas probes
increased by 55% during the COVID-19 outbreak. Finally
we present a case study focused on major Japanese ISPs and
show that CDN access logs support our findings. Our compar-
ison between different access technologies in Japan narrows
down the problem to the extensive use of the shared legacy
infrastructure over PPPoE and shows that wired broadband
throughput for some ISPs is consistently lower than LTE
during peak hours.

This work provides valuable insights to the operational
community with the following research contributions:

∙ We propose (§2) and validate (§4) a methodology to mea-
sure persistent last mile congestion. We make our tools
publicly available so that our experiments can be repro-
duced and extended [16].

∙ We report last-mile conditions in 2018 and 2019 for Atlas
probes located in 646 ASes and 98 countries, and we esti-
mate the impact of COVID-19 on last-mile latencies (§3).
These surveys are available on a public server [1].

∙ Our case study illustrates how a nation-wide infrastruc-
ture, which had successfully opened the telecommunication
market to competition [9], is now failing to cope with the
increasing demand (§4). Given the extent of this propri-
etary infrastructure and the difficulties to upgrade it, we
reiterate the importance of scaling and upgradability in
these deployments.

∙ Finally, we give recommendations to handle persistent
last-mile congestion in delay measurements with RIPE
Atlas, and discuss the adverse consequences of BBR in this
context (§6).

https://doi.org/10.1145/3419394.3423648
https://doi.org/10.1145/3419394.3423648
https://doi.org/10.1145/3419394.3423648


IMC ’20, October 27–29, 2020, Virtual Event, USA Romain Fontugne, Anant Shah, and Kenjiro Cho

2 FROM TRACEROUTE TO
LAST-MILE CONGESTION

With over ten thousands probes deployed world-wide, the
RIPE Atlas measurement platform is ideal for surveying
last-mile condition in numerous ASes. Also, as our interest
lies in the closest segment to the probes, we can recycle the
numerous public measurement data offered by Atlas. We
fetched data from the 22 IPv4 built-in traceroute measure-
ments [22] to obtain a steady number of RTT samples. These
measurements are executed by all probes towards all root
DNS servers and RIPE Atlas controllers every 30 minutes,
and two randomly selected addresses every 15 minutes.

For our experiments, we filter out some undesired tracer-
outes. First, we ignore traceroutes from Atlas anchors as this
type of probe is usually located in datacenters, thus without
a typical last-mile connectivity. Second, for each probe, we
group its traceroutes into 30-minute time-bins and discard
traceroutes in bins that have less than 3 traceroutes. This
sanity check ensures that the Atlas probe is normally oper-
ating during the time bin, thus we avoid incorrect inference
with disconnected probes. Also we deliberately employ large
time-bins (30-minute) to filter out transient congestion and
focus only on long-lasting congestion.

Although past research has shown that v1 and v2 probes
can be less reliable [13], in our experiments we observe only
slight differences in our aggregated results when using these
probes. As a trade-off between precision and coverage, we
avoid using these probes when it is not needed (§4) but we
include them when surveying last-mile latency at large scale
(§3).

In this paper, we focus on eight measurement periods. Six
periods are used for longitudinal analysis, these stand for
the 1st to the 15th of March, June, and September, 2018 and
2019. We assess the impact of COVID-19 using traceroutes
collected from the 1st to the 15th of April 2020. Finally, we
collect traceroute data during the time period covered by the
CDN log data employed in §4. To avoid confusion, all dates
are in UTC.

2.1 Estimating last-mile RTT

The last-mile is generally regarded as the segment connecting
the probe’s premises to the ISP IP infrastructure. In practice,
we identify the ISP edge infrastructure as the first public IP
address seen in the traceroute (i.e. not a RFC1918 private
address). We notice that some of these IP addresses are not
announced on BGP, thus when we need to identify the ASN
corresponding to the last-mile, we use the probes’ public
address for longest prefix match with BGP data.

To estimate the last-mile RTT, we simply subtract the last
private IP RTT from the identified first public IP RTT. Past
work has shown that this is a practical estimate when paths
are symmetric [7, 11], which is expected for private LANs
hosting Atlas probes.

Using the traceroute dataset mentioned above, every 30
minutes we obtain 24 traceroutes and compute 9 RTT samples
per traceroute (pairwise subtraction of the 3 RTTs for each

of the last private IP and the first public IP); that is 216
samples per probe. To filter out noise as in [11], we compute
the median RTT per probe in 30-minute time-bins.

Congestion is monitored by estimating the deviation (i.e.
queuing delay) from a base latency (i.e. propagation delay).
To measure these delay changes we subtract the minimum
median RTT value from all median RTT values for each probe.
The minimum median RTT is computed separately for each
measurement period to account for Atlas probe deployment
changes. Consequently, we obtain a rough estimate of last-
mile queuing delay for each probe where the lowest point is
set to zero and other values correspond to delay increase in
milliseconds.

Finally, we derive the overall last-mile conditions from a
population of probes. In this paper we select a population of
probes based on their ASN (§3), or their ASN and geograph-
ical location (§4). To combine delays from a population, we
compute the median value across all last-mile queuing delay
estimates from that population. This gives us an aggregated
queuing delay where large fluctuations reveal times when the
majority of the probes experience high latency.

2.2 Examples

To give a concrete example, we present results from two
large eyeball networks hosting numerous Atlas probes. One
is located in the U.S.A. (hereafter referred as ISP US) and
the other one in Germany (ISP DE).

Figure 1 depicts aggregated queuing delay for each mea-
surement period and AS. For ISP DE (upper plot) we observe
very stable delays for all measurement periods. Even in April
2020, during COVID-19 lockdown, we observe no particular
change. These results and our large-scale survey (§3) support
past observations [3] by showing that last-mile RTTs are
usually stable.

For some networks, however, we found interesting patterns
that reveal persistent delay increases. For example, ISP US
(Fig. 1 lower plot) features a small but consistent diurnal
pattern during 2018 and 2019. In April 2020 this pattern
is even more pronounced with peak hours widening over
daytime. As discussed in § 3, we attribute this to the impact of
COVID-19 lockdowns. The aggregated queuing delay increase
is apparently small, only over 1ms during peak hours, but
looking at the delays of each probe we observe that the
proportion of probes that experience daily queuing delay over
5ms has tripled when compared to results in 2018 and 2019,
representing a quarter of the probes in 2020.

For now we would like to stress two key observations: (1)
Similar to persistent inter-domain congestion [7], persistent
last-mile congestion is characterized by a clear daily pattern,
and (2) these two types of congestion differ by their amplitude.
In the case of last-mile congestion we aggregate delays from
numerous links, hence, unless most links are congested we
measure only small aggregated variations. In § 4 we show that
significant throughput drops occur when aggregated delays
are over 1ms. Furthermore, our metrics are designed to be
robust to outliers thus only long lasting congestion across
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Figure 1: One week of aggregated last-mile queuing
delay for large German (top) and American (bot-
tom) ISP in 2018-2020. Numbers in parentheses are
the number of Atlas probes for each measurement
period.

multiple probes can cause the aggregated delay increase.
Indeed, by computing probes’ median RTT in 30-minute
time-bins, we filter out bins that are congested for less than
15 minutes. Combining probe signals with the median also
implies that the majority of the probes should experience
delay increase to be visible at the AS level.

2.3 Detecting persistent congestion

As illustrated above, and more broadly in our survey (§3),
persistent congestion is visible on a daily basis. We leverage
this observation to systematically identify persistent last-mile
congestion in our large collection of traceroutes.

We employ basic signal processing techniques to decom-
pose aggregated delay signals in frequency components and
extract the daily patterns. Namely, we convert the aggre-
gated delay signals to the frequency domain using the Welch
method. This method splits the delay signals in overlapping
segments and computes the periodogram (i.e. power mea-
surements vs. frequency bins) of each segment using Fourier
transform. Then all periodograms are averaged to obtain a
final periodogram that is less affected by noise in the original
signals.

The Welch method enables us to identify the prominent
frequency component of signals by finding the frequency bin
with the highest power in the periodogram. Then we check if
the frequency bin corresponds to daily fluctuations, and we
derive from the corresponding power in the periodogram the
average peak-to-peak amplitude of these fluctuations. These
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Figure 2: Periodograms computed with Welch
method and aggregated queuing delays of Fig.1. The
y-axis is normalized to read directly average peak-to-
peak amplitude. See legend in Fig.1.

two markers (frequency and amplitude) allow us to classify
aggregated delay signals into four categories:

∙ Severe: prominent daily pattern and amplitude over 3ms.
∙ Mild: prominent daily pattern and amplitude over 1ms.
∙ Low: prominent daily pattern and amplitude over 0.5ms.
∙ None: no prominent daily pattern or daily pattern
amplitude below 0.5ms.

The 0.5ms threshold value is set to focus mainly on the
most congested networks. The 1ms and 3ms threshold values
are set such that the size of classes Severe, Mild, Low, are
well balanced in our experiments (see Fig.4).

Going back to our example with ISP DE and ISP US,
Figure 2 depicts the periodograms derived from the signals
shown in Figure 1. Here the periodograms are displayed such
that the y-axis represent the peak-to-peak amplitude. For
ISP DE (top plot) the spectrum is mostly flat, meaning that
the signal is mainly composed of noise. However, the daily
frequency bin (x=1/24) is clearly dominant for ISP US (bot-
tom plot). The average daily amplitude is usually estimated
around 0.4ms except on April 2020 where it goes up to 1.19ms.
Thus we classify ISP US as mildly congested on April 2020
and as not congested during the other measurement periods.

3 PERSISTENT LAST-MILE
CONGESTION IN ATLAS

Now we extend our last-mile congestion analysis to all ASes
hosting at least three Atlas probes. Here we include v1 and v2
probes for a better coverage and obtain classification results
for a total of 646 ASes in 2018-2019.
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Figure 3: Distribution of prominent frequencies in
all monitored signals (top plot), and distribution of
peak-to-peak amplitude for prominent daily compo-
nents (bottom plot).

3.1 A small number of congested ASes

On average about 90% of the monitored ASes are classified
as None, meaning that they exhibit no significant diurnal
pattern. The number of reported ASes (i.e. not classified
as None) is quite stable over time with an average of 47
ASes per measurement period. We observe little churn over
the two years, 36 ASes are reported for at least half of the
measurement periods.

In the previous section, we assume that persistent con-
gestion is commonly seen on a daily basis. We check this
hypothesis by identifying the main frequency component in
each AS using the Welch method. Figure 3 (top plot) reveals
that the majority of the ASes exhibits a daily fluctuation
(x=1/24), and other ASes are uniformly distributed across
the whole spectrum. Figure 3, bottom plot, displays the am-
plitude corresponding to identified daily fluctuations. Around
83% of the ASes have a daily amplitude lower than 0.5ms
thus barely noticeable, then about 7% are between 0.5ms
and 1ms, another 6% are between 1ms and 3ms, and the rest
(4%) are over 3ms. Using these values for our classification
lets us focus mainly on the distribution tail, that is the top
congested networks.

3.2 Congestion in eyeball networks

To get a sense of the number of Internet users impacted by
the identified congestion, we classified our results with the
help of the APNIC eyeball population estimates [2]. Figure 4
breakdowns the September 2019 and April 2020 results into
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Figure 4: Classification breakdown for results in Sep-
tember 2019 and April 2020. Cropped at 40% for
better visibility.

APNIC rankings. This suggests that last-mile congestion
tends to appear in large eyeball networks (i.e. top 1000 ASes
in APNIC ranking). Breakdown for preceding measurement
periods are similar and hence not displayed.

COVID-19. In April 2020 we observe an increase of last-
mile congested ASes that we attribute to the impact of
lockdowns due to the COVID-19 pandemic. The number of
ASes hosting congested probes increased by 55% (45 to 70
ASes) from September 2019 to April 2020. As expected, large
eyeball networks are the most impacted ones (Fig. 4). The
largest reported network being ISP US with an average daily
amplitude of 1.19ms as shown in Figure 1.

Notice that this work is, however, only looking at last-
mile congestion, the increase of traffic during lockdowns may
create congestion at other locations. For example Italy has
reportedly been experiencing significant end-to-end delay
increases [5, 15] but this was not noticed in our results on
April 2020.

Geographical distribution. Using the country code provided
with the APNIC ranks, we also look into the geographical dis-
tribution of congested ASNs before COVID-19. Out of the 98
monitored countries, 53 have at least one reported ASN, and
only 23 have at least one ASN reported as severely congested.
Japan contains the highest number of Severe reports (18%
over the two years), followed by U.S.A. (8%). Out of the top
10 monitored Japanese ASes (in terms of APNIC rankings),
5 are reported at least once in 2018 and 2019, including 3
that are constantly reported. In contrast to the low number
of congested ASes found across the Atlas platform, Japan
has a relatively high number of congested ASes. Policy mak-
ers [18] and network operators [19] have previously pointed
out the overwhelming use of Japan’s legacy infrastructure
and mention it as source of congestion. As this serves as a
good example to illustrate persistent last-mile congestion and
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surrounding circumstances, in the next section we present a
brief summary of Japan’s legacy infrastructure and provide
detailed analysis for Japan’s top three eyeball networks.

4 LAST-MILE CONGESTION IN
TOKYO

Japan is one of the top ranking fiber-to-the-home (FTTH)
countries, with 70% household penetration [14] as of 2018,
and holds a competitive telecommunication market. This situ-
ation was fostered by Japanese government forcing the former
state monopoly to grant unbundled access to other ISPs and
maintain a nation-wide fiber network, hereafter referred as
the legacy network [21]. The legacy network accounts for
about 70% of FTTH access in Japan, with customers usually
reaching their ISP via PPPoE. PPPoE was an enabler for
the competitive ISP market when introduced in 2000, but
has been gradually ossified because carrier-specific PPPoE
equipment is too expensive to upgrade for low-profit broad-
band services, also requiring cumbersome negotiations among
the carrier, ISPs, and government. Although comprehensive
measurement is lacking, legacy’s PPPoE equipment has been
considered as source of congestion [19, 23].

Accordingly, we investigate the relation between observed
persistent last-mile congestion and legacy’s PPPoE usage.
Our investigation starts with the following hypothesis: net-
works relying on the legacy network via PPPoE are more
prone to congestion. We check this hypothesis by looking
at delays from networks relying mostly on the legacy net-
work, ISP A and ISP B, and one network with its own fiber
network, ISP C. These are the three major ISPs in Japan.

Because the number of Atlas probes is limited with a
potential bias towards tech-savvy users, last-mile latency
results are cross referenced with CDN log data collected in
Tokyo in order to assess the presence of congestion, and
validate our approach with much larger (about 150k unique
IPs) and unbiased samples. For a fair comparison between
traceroute and CDN data, we select only Atlas probes in the
Greater Tokyo Area (i.e. Tokyo, Yokohama, Chiba, Saitama)
which gives a total of 21 probes in the three selected ISPs.
The last-mile latency for these ASes is computed exactly as
presented in §2 but selecting only probes located in Tokyo.
The CDN and traceroute datasets span from September 19th

until the 26th, 2019.

4.1 Last-mile delays

Figure 5 shows the aggregated last-mile delays computed
for probes in Tokyo. The three networks are performing
with similar queuing delays outside of peak hours. During
peak hours, however, ISP A and ISP B exhibit consistent
delay increases whereas ISP C keeps stable. For ISP C we
do observe maximum delays during peak hours (depicted by
markers in Fig.5) but by an order of magnitude lower than
the two other networks.
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Figure 5: Aggregated last-mile queuing delays for
major eyeball networks in Tokyo. Markers are placed
on daily maximum delay values.

0
10
20
30
40
50
60

Th
ro

ug
hp

ut
 (M

bp
s) ISP_A ISP_B

0
10
20
30
40
50
60

Th
ro

ug
hp

ut
 (M

bp
s)

ISP_B (mobile) ISP_A (mobile)

Th
u. 

Se
p. 

19

Fri
. S

ep
. 2

0

Sa
t. S

ep
. 2

1

Su
n. 

Se
p. 

22

Mon
. S

ep
. 2

3

Tu
e. 

Se
p. 

24

Wed
. S

ep
. 2

5

Th
u. 

Se
p. 

26
0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (M

bp
s)

ISP_C ISP_C (mobile)
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Japanese ISPs, displayed in 30-minute bins. Top plot:
ISP A and ISP B broadband users. Middle plot:
ISP A and ISP B mobile users. Bottom plot: ISP C
broadband and mobile users. Markers are placed on
daily minimum throughput.

4.2 Throughput measurements

To validate our results and estimate the impact of observed
congestion on traffic, we estimate average throughputs from
a large commercial CDN access logs collected in Tokyo. Since
the studied ASes provide both broadband and mobile services,
we filter out all entries corresponding to mobile prefixes as
advertised on their website (Appendix A). Then we select
only requests for objects greater than 3MB and marked as
cache-hit. This allows us to account for TCP dynamics [10]
and artifacts caused by CDN functioning. As with the delay
measurement, we measure throughput per IP and compute
ASN aggregates by computing the median value in 15-minute
time-bins.
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Figure 7: Aggregated last-mile queuing delay and
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and 60Mbps for better visibility.

The top plot of Figure 6 shows the median throughput
for ISP A and ISP B broadband, both marked by significant
daily drops. The throughput for these networks decreases to
less than half during peak hours approximately coinciding
with delay increases observed in Figure 5.

We can also check the PPPoE hypothesis by comparing
these results to mobile users throughput. Figure 6 middle plot
depicts the median throughput for ISP A and ISP B mobile
users (ISP A mobile users are from a different AS). We see
no similarity between broadband and mobile throughputs,
cellular networks show consistent performance by maintain-
ing median throughput above 20Mbps. ISP C throughput
also exhibits no significant daily drop for both broadband
and mobile users (bottom plot). The stable performances of
ISP C and cellular networks also confirm that the observed
throughput drops are not due to congestion at the CDN.

4.3 Delay and throughput correlation

To better understand the relationship between delay and
throughput fluctuations, we cross-reference both datasets.
For congested ASes, we find that there is clear non-linear
correlations between delay and throughput, hence we report
correlation using Spearman’s rank correlation coefficient. Fig-
ure 7 shows the relationship between delay and throughput.
For ISP A (left plot) delay increases concur with throughput
decreases (𝜌 = −0.6). For instance, we always observe low
throughput when aggregated delay is above 1ms. For ISP C
(right plot) there is absolutely no correlation between the
two metrics (𝜌 = 0.0), meaning that throughput and delay
fluctuations are driven by different factors.

Although these results cannot imply causation, they agree
with our hypothesis hence support previous observations [19].
We also argue that this is strong evidence of persistent last-
mile congestion and thus validate the monitoring technique
of §2.

5 LIMITATIONS

The above analysis have several limitations that should be
taken into consideration when interpreting these results.

First, our inferences are made from vantage points that may
not be representative of the AS they belong to, especially
when the number of Atlas probes is low. The presented
delay results are mostly conveying Atlas’s view on last-mile
congestion and thus are also prone to Atlas’ deployment bias.
Estimating the bias of Atlas is however beyond the scope of
this work.

Second, ISPs may use different access technologies thus
have mixed results, our approach is not accounting for these
discrepancies and reports only aggregated results using me-
dian values.

Finally, by monitoring median last-mile queuing delay our
inferences are drawn from the majority of the probes. The
other probes may not see any congestion. We are not ac-
counting for the variability between probes, however using
frequency analysis we ensure that congested probes are ob-
served daily thus we report only ASes with probes that are
consistently congested over time.

6 DISCUSSIONS

Results presented in this paper have several implications for
the networking community.

We believe the original version of BBR [6] that disregards
packet loss may be detrimental in the context of persistent
last-mile congestion, as it may put more burden to already
overwhelmed devices. Thus, the improvements brought by
BBR v2 (i.e. account for loss and ECN) are essential in this
context [20].

Special care is also required when working with measure-
ment platforms, such as RIPE Atlas. For instance, geolocation
studies and services based on latency [4, 8, 27] should avoid
making inferences during peak hours and with probes affected
by persistent last-mile congestion. More generally, we rec-
ommend inspecting last-mile latency for any Internet delay
study as last-mile congestion may induce wrong inferences.

Although omitted here for brevity, we have made a few
more observations in Japan using Atlas anchor’s delay (Ap-
pendix B) and IPv6 traffic (Appendix C) and noticed that the
use of IPoE (instead of PPPoE) for IPv6 in most Japanese
ISPs help circumvent congested legacy devices. This could
suggest that the newer IPv6 infrastructure scales better but
this could also be due to the different traffic volume carried by
each protocol. Comparing protocol performances is however
beyond the scope of this paper and left for future work.

7 CONCLUSIONS

In this paper we have presented an analysis of persistent
last-mile congestion and found that this type of congestion
appears consistently for Atlas probes located in 10% of moni-
tored ASes, including large eyeball networks. In addition, we
recorded persistent last-mile congested probes in 55% more
ASes during the COVID-19 outbreak. Our detailed analysis
of Japan’s major ISPs with the help of CDN logs confirmed
that detected last-mile congestion has a drastic impact on
users throughput.
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Appendices

A MOBILE PREFIXES OF JAPANESE
ISPS

Major Japanese Mobile Network Operators (MNOs) publicly
share the IP prefixes used for mobile connectivity. This is
an effort to help web services to provide adapted content to
cellular users. The following links are example of such list of
prefixes:

∙ https://www.nttdocomo.co.jp/service/developer/smart phone/
spmode/index.html

∙ https://www.support.softbankmobile.co.jp/partner/home
tech1/index.cfm

∙ https://www.support.softbankmobile.co.jp/partner st/home
tech1/ios/index.cfm

∙ http://www.au.kddi.com/developer/android/kaihatsu/network/
∙ http://www.au.com/ezfactory/tec/spec/ezsava ip.html

B ANCHOR VS. PROBES DELAY

Another way to check the hypothesis of Section 4 is to com-
pare results from Atlas probes with results from anchors
for networks relying on the legacy network. As we expect
anchors to be located in datacenters, anchors are closer to the
backbone network and are not using the legacy network. In
other words the main differences between probes and anchors
hosted in the same AS is the access link. And if the AS relies
on the legacy network, then we expect to see congestion for
probes but not for anchors.

We found only one AS (hereafter referred as ISP D) that
relies on the legacy network for its broadband service and
that hosts both Atlas probes and anchor. Figure 8 shows the
aggregated last-mile queuing delay for ISP D’s probes (top
plot) and its anchor (bottom plot). Both are close to 0ms
during off-peak hours but the probes’ delay increases signifi-
cantly during peak hours while the anchor’s delay stays at the
same level. This is another example illustrating congestion
at the legacy network.

C IPV6 THROUGHPUT ANALYSIS

For the legacy network in Japan, an alternative to PPPoE is
IPoE, which is usually used for IPv6 and provides a better
connectivity due to more recent equipment and lower number
of users [19, 21]. Although not all IPv6 is over IPoE, overall we
expect IPv6 to be less affected by PPPoE congestions. Figure
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Figure 8: Comparison between last-mile queuing de-
lay (ms) of Atlas probes and anchor in ISP D.
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Figure 9: IPv4 and IPv6 throughput (Mbps) for the
three major ISPs of Section 4.

9 shows the IPv4 and IPv6 throughput for the three major
ISPs of Section 4. Overall we found that IPv6 throughput
is better than IPv4 and this is especially true during peak
hours for ISP A and ISP B. IPv6 is not showing performance
degradation during peak hours which suggests that the IPv6
infrastructure scales better but it could also be due to the
lower volume of traffic observed for this protocol (not shown
here).
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