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Abstract
The Internet measurement community has significantly advanced
our understanding of the Internet by documenting its various com-
ponents. Subsequent research often builds on these efforts, using
previously published datasets. This process is fundamental for re-
searchers, but a laborious task due to the diverse data formats,
terminologies, and areas of expertise involved. Additionally, the
time-consuming task of merging datasets is undertaken only if
the expected benefits are worthwhile, posing a barrier to simple
exploration and innovation. In this paper we present the Internet
Yellow Pages (IYP), a knowledge graph for Internet resources. By
leveraging the flexibility of graph databases and ontology-based
data integration, we compile datasets (currently 46) from diverse
and independent sources into a single harmonized database where
the meaning of each entity and relationship is unequivocal. Using
simple examples, we illustrate how IYP allows us to seamlessly nav-
igate data coming from numerous underlying sources. As a result,
IYP significantly reduces time to insight, which we demonstrate by
reproducing two past studies and extending them by incorporating
additional datasets available in IYP. Finally, we discuss how IYP
can foster the sharing of datasets as it provides a universal plat-
form for querying and describing data. This is a seminal effort to
bootstrap what we envision as a community-driven project where
dataset curation and ontology definitions evolve with the Internet
measurement community.

CCS Concepts
• Networks→ Network measurement; • Information systems
→ Information integration; Graph-based database models.
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Internet measurement, knowledge graph, Internet topology, DNS,
routing
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1 Introduction
The Internet measurement community generates a considerable
amount of public datasets, which provide not only valuable insights
into the current Internet but also a solid foundation for studying
its evolution. The process of continuously building on these new
insights is fundamental to research, yet it is a laborious task that
involves convoluted processing and integration of diverse and of-
ten large datasets. Consequently, we find ourselves ill-equipped to
promptly answer specific questions that fall within the realm of
knowledge amassed by the measurement community. The commu-
nity’s efforts to encourage researchers to share their source code are
a testimony to this challenge. To an extent, challenges in integrating
Internet data are an impediment to innovation, as researchers tend
to merge datasets only when they anticipate significant benefits
from doing so.

Unfortunately, our community lacks a systematic approach for
compiling and sharing its collective knowledge, an issue that has
been tackled in other research fields. Two prime examples of this
are the Gene Ontology, a large database representing the current
understanding of gene functions [6, 32], and the DrugBank [20, 42],
a collaborative database of drug properties, interactions, side effects,
and indications. Both help facilitate research and new discoveries in
biology and healthcare by combining the knowledge of numerous
organizations.

Inspired by successful initiatives from other research fields, we
introduce the Internet Yellow Pages (IYP), a knowledge graph for
the Internet. The primary goal of IYP is to integrate various Internet
datasets, providing researchers with quick and homogeneous ac-
cess to the collective knowledge of the community. To achieve this,
IYP relies on two main components: an ontology and a graph data-
base. The ontology describes networking and Internet measurement
terminologies, facilitating the integration of diverse datasets by uni-
fying all datapoints and their relationships. The graph database
leverages this data unification and provides IYPwith the capabilities
to efficiently store, query and analyze data from various datasets.
Consequently, IYP constitutes a single harmonized database where
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the meaning of each entity and relationship is unequivocal. There
are different ways to access IYP. We maintain a public instance of
IYP and release database snapshots on a weekly basis.

To highlight the benefits of IYP, we reproduce two previous stud-
ies that focus on RPKI deployment [39] and DNS robustness [3].
The reproduction of these studies results in a set of IYP queries
demonstrating how IYP can help researchers in navigating a mul-
titude of diverse datasets and significantly reduce time to insight.
In addition, by leveraging the availability of other datasets within
IYP, we are able to quickly explore questions left as future work in
previous studies, extending their findings.

Using IYP streamlines the way we explore Internet data and dis-
seminate insights. We have found that IYP queries are remarkably
efficient at expressing interesting discoveries and sharing insights.
These queries typically consist of just a few lines of code. This
makes them easily shareable while still precisely conveying patterns
within the knowledge graph that may span multiple underlying
datasets. Additionally, the results of queries can be refreshed every
time the public instance of IYP is updated. We demonstrate this by
providing two Jupyter notebooks containing the IYP queries from
the two reproduced studies and code to query the public instance,
resulting in weekly reports for these two studies.

In this paper, we outline our efforts to bootstrap IYP, integrat-
ing 46 datasets from 23 organizations. We envision the future IYP
as a community-driven project where dataset curation and ontol-
ogy definitions evolve in tandem with the Internet measurement
community.

2 IYP design
The ultimate goal of IYP is to provide a universal platform to compile
and unify the combined knowledge of the Internet measurement
community, a frequent use case for knowledge graphs [25]. In a
nutshell, knowledge graphs are databases that use a graph data
structure model with built-in semantics, providing an efficient way
to merge and integrate datasets. Each entity in the database is rep-
resented by a node and relationships between entities are modeled
as links. The semantics of each node or link are described by an
ontology.

An ontology focuses on the meaning of the elements that com-
pose the database regardless of the database structure [34], as op-
posed to relational databases’ schema describing the structure of a
specific database. A relational database schema is typically tailored
for a specific application and ensures that common queries provide
very efficient data access. However, the integration of new data in
a relational database requires updating its schema, a tedious task
that may incur significant changes to the database and may break
backward compatibility. For knowledge graphs, one could circum-
vent this problem by mimicking a graph model schema, but this
has proven to produce schemas that are both hard and inefficient to
query due to the numerous joins required to traverse the graph and
the difficulty for relational databases to scale with the number of
joins [21, 24, 36]. These challenges have spurred the development
of graph databases and ontologies to streamline data modeling and
integration while maintaining data interpretability. Similarly to
popular large knowledge graphs [20, 37], IYP leverages these two
technologies to maintain a large, coherent, and extensible database.

The rest of this section describes our process for constructing the
IYP knowledge graph. First, we outline our guidelines for importing
a dataset into IYP (Section 2.1). Based on these datasets, we propose
an ontology for Internet resources and measurement terminologies
(Section 2.2) and then explain how we use this ontology to build
the IYP knowledge graph (Section 2.3).

2.1 Datasets
Our knowledge graph is based on open datasets documenting In-
ternet resources. Most of these datasets are created by research
groups and Internet companies. Table 1 lists multiple examples of
such datasets. Since these datasets constitute the main substance
of our knowledge graph, the selection of datasets is paramount.
Integrating a large number of datasets to achieve a comprehensive
knowledge graph is tempting, but can be counterproductive if it
includes too much erroneous or stale data.

When adding new datasets, we try to be as inclusive as possible
using the following five rules of thumb.

Format. For building IYP, fortunately, there is an abundance
of well-structured datasets made available by the measurement
community. Unlike many knowledge graphs, we do not require
Natural Language Processing (NLP) techniques to extract data [2,
40]. All the datasets we import are well-structured, and most are
available in a CSV or JSON format, making the extraction of values
straightforward. Using NLP — which is a delicate and error-prone
task — could be an interesting extension for IYP, but we first focus
on making the best use of datasets already made available by the
community.

Recognition. Any dataset is to some extent noisy and erroneous,
which impacts the usability of the knowledge graph. When import-
ing datasets, we do not attempt to sanitize them as doing so could
introduce another source of noise or, worse, corrupt the original
datasets. Instead, we aim to import reliable datasets that are gener-
ally recognized by the measurement community; we import only
datasets that have either gone through peer review (e.g., ASdb [43]
and AS hegemony values [12]), are commonly used by multiple
independent research groups if there is no peer-reviewed equiv-
alent (e.g., APNIC population estimate [8, 10, 13]), are facts from
authoritative sources (e.g., AS names from RIPE NCC and RPKI
data), or are observations made from renowned institutions (e.g.,
top domain names from Cloudflare and Cisco).

Freshness. Importing stale datasets could cause the collected
knowledge to be out of sync, making interpretation of the data
challenging. To avoid this problem, we integrate only datasets that
are frequently updated. There is no hard limit on the datasets update
frequency, as it depends on the nature of the data and the availability
of similar datasets updated at a higher frequency. For example,
currently the integrated dataset with the lowest update frequency
is Stanford’s AS classification, ASdb [43]. This dataset is updated
every six months. However, since we do not expect AS business
types to change frequently, we elected to include this dataset in IYP.

Originality. Redundant datasets are not a fundamental problem
for IYP, but they could become a practical issue. Redundant data un-
necessarily complicates the database and code maintenance. Hence,
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Table 1: Example of datasets imported in IYP. The complete list currently covers 46 datasets (see Table 8).

Organization Dataset Description Frequency License
BGPKIT pfx2asn Originating AS per prefix seen in all Daily BGPKIT AUA

RIS and RouteViews collectors.
CAIDA ASRank Ranking of ASes based on customer-cone. Monthly CAIDA AUA
Cloudflare top/ases (API) ASes that queried a domain name the most, - CC BY-NC 4.0
Radar derived from Cloudflare 1.1.1.1 data.
IHR AS Hegemony Inter-dependence of ASes based on BGP data. Daily CC BY-NC 4.0
OpenINTEL tranco1m DNS resolution for Tranco Top 1M domain names. Daily CC BY-NC 4.0
PCH Routing snapshots BGP data collected from PCH. Daily CC BY-NC-SA 3.0
PeeringDB ix (API) Information related to IXPs and their members. - PeeringDB AUA
Stanford ASdb Classification of ASes by business type. 6-month -

Figure 1: Example ontology for networking data. Entities describe the types of the nodes in the knowledge graph and relation-
ships describe how two entities relate to each other.

Figure 2: Overview of the knowledge graph construction steps. Starting from multiple
heterogeneous datasets (Datasets column). Data is extracted from datasets and formalized
using the ontology of Figure 1 (Knowledge Extraction column). Then datasets are combined
and additional refinements are performed (Fusion & Refinement column).

Figure 3: Example searches look-
ing only for patterns in the
knowledge graph (1, 2) and a pat-
tern including a specific node (3).

we avoid importing datasets that are inferred from the same data
source. For example, CAIDA, IHR, and BGPKIT prefix-to-AS map-
pings [7, 9, 18] are all derived from RouteViews and RIPE RIS BGP
data. Since the processing for these datasets is straightforward we
expect little differences between them. Currently, we import only
BGPKIT’s prefix-to-AS mapping [7] given that it is the only one
that uses all RIS and RouteViews collectors and is updated daily.

Shareable. IYP is a public knowledge graph, so we include only
datasets with a license that permits us to reshare the data. As dis-
cussed in Section 3.1, snapshots of IYP are made public so that
one can download and run the whole database locally to import
and analyze confidential data. Since each dataset is released with a

different license, we provide links to the licenses of all datasets1 to
comply with their terms of use and so that users can more easily
find which dataset is appropriate for their purposes.

The list of datasets supported in IYP continues to grow. Currently,
IYP includes 46 datasets from 23 organizations (see Table 8). The
full list of datasets is available on IYP’s documentation page.2

2.2 Ontology
The benefits of knowledge graphs come from the integration of for-
mal semantics, also known as ontology, and the data. The ontology
describes all entities and their relationships found in the datasets.
1https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/
ACKNOWLEDGMENTS.md.
2https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/
documentation/data-sources.md.
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It is composed of terms and definitions that derive directly from
the domain-specific vocabulary and shared knowledge. This is the
glue between the data providers, IYP, and the users, making sure
that all stakeholders can easily and precisely interpret the data.

For IYP, we aim to build an ontology that models common net-
working knowledge. For example:

• An AS is managed by an organization;
• An AS originates a prefix in BGP ;
• A hostname resolves to an IP address.

The proposed ontology describes entities, relationships, and prop-
erties. Entities delineate the different fields found in datasets and
consequently the type of nodes in the knowledge graph (see Entities
in Figure 1). These are often network resources, such as Hostname,
IP address, AS, Prefix but can include other types of information (e.g.,
Organization). IYP currently has 24 distinct entities (see Table 6
in the Appendix). This number is slowly growing as we add more
datasets with new fields to IYP. The up-to-date list of entities is
available online.3

Relationships describe how pairs of entities are related to each
other (e.g., resolves to, originates, and managed by). These are usu-
ally implicit in the imported dataset. For instance, a prefix-to-AS
mappings dataset is usually expressed as a list of <prefix, ASN> pairs
meaning that a prefix is originated by a certain AS. In the knowl-
edge graph, these relationships are explicit and clearly described
by the ontology. IYP currently has 24 distinct types of relationships
shown in Table 7, the up-to-date list of relationships is documented
online.4

Properties are attributes that characterize a specific entity or
relationship. For example, eachAS has an asn property that uniquely
identifies an AS. Generally speaking, entities (nodes) have a small
number of properties that are used for identification. On the other
hand, relationships may have quite a large number of properties.
Fields in datasets that are not described by the ontology entities and
relationships are modeled as properties. For example, PeeringDB
provides detailed information about IXPmembers. The membership
is modeled by amember of relationship between AS and IXP nodes,
but circumstantial details (e.g., peering policy or typical traffic
levels) are modeled as properties of the relationships.

Furthermore, we systematically add relationship properties in
order to document the origin of the data. While importing a dataset,
each time we create a new link we annotate the link with the
following properties:

Organization: The name of the organization that provides and
maintains the dataset. This property can be used to select or
discard data from a particular organization.

Dataset name: A unique name for the original dataset. This
property is extremely important as it enables tracking the
exact source of the data, conveying the limitations and ap-
propriate use of the data. It can also be used to select or
discard a specific dataset.

Information URL: If available, this provides a link to a human-
readable description of the original dataset.

3https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/
documentation/node_types.md.
4https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/
documentation/relationship_types.md.

Dataset URL: The URL from which we retrieved the dataset.
Modification time: If available, the time when the dataset

was last modified.
Fetch time: The time at which we imported the dataset into

IYP.

These properties are particularly important for tracking the origin
of datapoints in the knowledge graph and, selecting or filtering
certain datasets for analysis.

2.3 Graph construction
Using the above ontology, the knowledge graph construction is
straightforward. We identify entities and relationships in selected
datasets and model each dataset as a sub-graph (Knowledge Extrac-
tion in Figure 2). The whole graph falls into place by aligning the
same entities found in different datasets, and is finalized by adding
simple relationships from common networking knowledge (Fusion
and Refinement in Figure 2).

For each dataset, we implement a custom script that maps the
dataset schema to the entities and relationships of the IYP ontol-
ogy. Although this is a trivial step for many datasets, we should
cautiously verify that the meaning of the schema matches the IYP
ontology and avoid ambiguities. For fields that are not yet covered
by the ontology, we either extend the ontology, or we store them
as relationship properties (not described in IYP ontology). Hence
users that are acquainted with the original dataset can still access
the whole dataset.

We avoid creating duplicate nodes (i.e., nodes representing the
same entities) by enforcing canonical forms of certain identifiers
(IP address, IP prefix, ASN, country code). For example, in Figure 2
the IHR dataset contains the 2001:DB8::/32 prefix and the BGPKIT
dataset contains the 2001:0db8::/32 prefix. These are both represent-
ing the same IPv6 prefix written differently, which would create
two nodes for the same prefix. To avoid duplicates we translate
these values to their canonical form, hence both entries will be
modeled as a prefix node 2001:db8::/32. This ensures that a node in
the knowledge graph uniquely identifies the same network resource
that may appear in various forms in multiple datasets.

In contrast, for relationships we leverage the possibility to have
the semantically same link multiple times but obtained from differ-
ent datasets. For example, we may have two datasets that indicate
that a prefix is originated from a certain origin AS. In IYP this is
modeled as two distinct links that connect the same nodes. We can
differentiate these two links by looking at their Dataset name prop-
erty (see Section 2.2). Consequently, an imported dataset is entirely
mapped to a set of links in the knowledge graph. This allows us
to easily select or discard a certain dataset. It is also very handy to
compare two similar datasets.

Apart from the translation of identifiers to their canonical form,
we purposely make no changes to the datasets and import them
as-is. We are aware that certain datasets are erroneous and accept
that no dataset is perfect. Pretending to clean up all datasets would
be foolish, as we could accidentally introduce new errors, give the
false impression that the database is perfect, and confuse users
on the methodology and limitations for each dataset. Instead, we
encourage anyone to report errors found in IYP directly to the
data providers, so that the original dataset can be fixed, which

https://github.com/InternetHealthReport/internet-yellow-pages/blob/main/documentation/node_types.md
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benefits the community at large. In addition, users that understand
the limitations of the original dataset can rely on the fidelity of
our knowledge graph to the original data. Users can also decide to
discard a specific undesirable dataset when querying the knowledge
database.

The final touch to the IYP knowledge graph is the addition of
common knowledge that is usually implicit in datasets (Refinement
in Figure 2). After all datasets have been imported, we add a property
to all IP address and prefix nodes to explicitly describe their address
family (IPv4 or IPv6). We also link each IP address node to the prefix
node corresponding to the longest prefix match, and each prefix
to its covering prefix, so that one can easily navigate between
IP addresses and prefixes. Similarly we also link URL nodes to
corresponding hostname nodes. Finally, we make sure that every
country node has a two- and three-letter country code as well as
a common name. All these additions are safe to implement and
simplify queries.

3 IYP in practice
This section provides implementation details, describes how we
share IYP, and ends with an illustrative example and simple queries.

3.1 Implementation
IYP is based on Neo4j, a native graph database that has an outstand-
ing adoption in multiple domains [31, 33], thanks to its powerful
querying language, Cypher [14], and active community. We pub-
lish5 all our scripts for downloading, parsing, and merging datasets.
The crawler for each dataset is implemented independently, hence
one can easily build a customized knowledge graph.

As shown in the examples below, IYP entities and relationships
are written following the Neo4j naming convention.6 Both are
preceded by a colon (:) to indicate that they refer to a node or
relationship type. Entities are written in camel-case, beginning
with an upper-case character (e.g., :DomainName). Relationships
are written in upper-case, using an underscore to separate words
(e.g., :RESOLVES_TO).

IYP is made publicly available in two different ways. We deploy
a public, read-only Neo4j instance that can be queried by anyone.7
It has two main interfaces, a graphical web UI and an API. We also
provide a Neo4j docker image and weekly snapshots of the database
so that users can run their own instance of IYP and locally conduct
intensive analysis or experiments with IYP. A local instance is
especially suitable for integrating and analyzing confidential data
with IYP. We are currently building a complete IYP knowledge
graph four times a month (on the 1st, 8th, 15th, and 22nd of the
month) in order to provide frequently updated snapshots. Each
snapshot is about 4GB compressed and takes up to 40GB when
loaded in Neo4j. Apart from disk space the requirements for running
IYP are very low — our public instance runs in a virtual machine
with 4 vCPU and 8GB of RAM.

5https://github.com/InternetHealthReport/internet-yellow-pages.
6https://neo4j.com/docs/cypher-manual/current/syntax/naming.
7https://iyp.iijlab.net.

3.2 Sneak peek
Figure 4 is an example taken from IYP demonstrating the seamless
and intuitive fusion of datasets that IYP enables. The visualization
is produced by Neo4j’s web GUI which also allows interaction with
the graph. One should be able to read and understand the meaning
of the graph only with common networking knowledge.

This example (Figure 4) is obtained by following a few relation-
ships starting from the yellow top-left node which represents the
DNS zone cut [16] for the nytimes.com DomainName. The RANK re-
lationship going to the Tranco Top 1M node shows that this domain
name is ranked in the Tranco ranking. The exact rank is encoded
in a property of the RANK relationship not shown in Figure 4.

The top branch starting from the PART_OF relationship con-
nected to the nytimes.com HostName node represents details about
the zone apex [16] (resolvable FQDN at the origin of the zone).
The TARGET relationship to that node indicates that a ping At-
las measurement is targeting this hostname and one of the Atlas
probes participating in this measurement is shown next to it. The
probe node properties (not shown in Figure 4) contain all infor-
mation provided by Atlas (e.g., probe ID, tags, type of probe). The
RESOLVES_TO relationship from the nytimes.com hostname (pink
node) points to the resolved IP address that is part of a prefix
that is originated by AS54113 — named Fastly — and categorized
as a content delivery network (by BGP.Tools as indicated by a
property of the CATEGORIZED link but not shown in Figure 4).
The prefix is also categorized as being anycast (by BGP.Tools) and
RPKI Valid (by IHR). The RPKI ROA for this prefix is shown by
the ROUTE_ORIGIN_AUTHORIZATION relationship between the
prefix and the AS.

Going back to the nytimes.com DomainName node (yellow node)
and following the middle branch starting from the MANAGED_BY
relationship, we find one of the authoritative DNS nameservers to
which this domain name is delegated. This nameserver resolves to
an IPv6 address that is part of an IRR Valid prefix, announced by
AS16509, named Amazon-02.

Finally the last branch below the nytimes.comDomainName node
(yellow node) and starting from the relationship QUERIED_FROM
indicates that AS7018 (AT&T a Tier1 network as shown by the
NAME and CATEGORIZED relationships) is frequently querying
this domain name (data provided by Cloudflare Radar). We also
observe that AS7018 is peering with the RIS BGP collector rrc00.

The main purpose here is to illustrate the benefits of the knowl-
edge graph to unify and ease the interpretability of the data pro-
vided by the 13 datasets underlying this example. The availability
of numerous datasets in IYP is remarkably helpful in uncovering
orthogonal datasets that may not be initially considered but prove
to be insightful. For example when studying a specific set of IP
addresses and discovering the existence of Atlas measurements tar-
geting these IP addresses, or finding that the corresponding prefix is
RPKI invalid or anycasted. The example is not comprehensive, there
are more nameservers, IP addresses, prefixes, and ASes that relate
to the nytimes.com domain name. There are also other datasets that
could be demoed and uncovered here — for example IXPs from
PeeringDB, or related resources in delegated files — but we have
limited the number of relationships to keep the example simple.

https://github.com/InternetHealthReport/internet-yellow-pages
https://neo4j.com/docs/cypher-manual/current/syntax/naming
https://iyp.iijlab.net
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Figure 4: Example of data related to the nytimes.com domain name (DNS zone cut, left yellow node) and corresponding hostname
(resolvable FQDN, pink node labelled nytimes.com). The displayed data is obtained from 13 different datasets illustrating data
unification in knowledge graphs. Notice that the meaning of certain relationships (e.g., PART_OF) is based on the connected
entities.

3.3 Semantic search
The above example illustrates an exploration of the knowledge
graph starting from a certain node in the graph. In order to auto-
mate data analysis one can systematically query the graph. Knowl-
edge graphs allow for semantic search, which expresses the user
intention rather than the traditional literal match of query key-
words. For example, a user searching for AS7018 in the dataset can
query for an AS node with the ASN property set to 7018. This is
radically different from looking for all instances of ’7018’ in the
database.

A user can search for meaningful patterns in the graph. Going
back to the simple example of Figure 2, a user can find all ASes
originating prefixes by looking for the pattern where an AS and a
prefix node are linked by a originate relationship (see 1 in Figure 3).
Another example, is to search for multiple origin AS (MOAS) pre-
fixes which consists of looking for prefixes that are connected to
two different ASes in the graph (see 2 in Figure 3). Notice that these
patterns contain no lexical elements. There is no keyword to look
for; they are expressing the user intention exclusively with terms
from the ontology.

A tutorial on Cypher, Neo4j’s querying language, is beyond the
scope of this paper, but to showcase real IYP queries we provide
Cypher queries for the two above examples (1 and 2 from Figure 3)
in Listing 1 and 2.

The MATCH clause is followed by a search pattern. The pat-
tern is composed of nodes and relationships indicated respectively
by parenthesis and squared brackets surrounded by dashes. For
example, this is an AS node, (:AS), and this is a originate rela-
tionship, -[:ORIGINATE]-. Consequently the pattern of Listing 1,
(x:AS)-[:ORIGINATE]-(:Prefix), stands for an AS originates a prefix.
The x in the AS node is a variable that we can refer to later in the
query. We use it to fetch the ASN property of the AS node in the

// Select ASes originating prefixes
MATCH (x:AS)-[:ORIGINATE]-(:Prefix)
// Return the AS's ASN
RETURN DISTINCT x.asn

Listing 1: Cypher query to find all originating ASes in IYP
(see 1 in Figure 3). Lines starting with // are comments.

// Find Prefixes with two originating ASes
MATCH (x:AS)-[:ORIGINATE]-(p:Prefix)-[:ORIGINATE]-(y:AS)
// Make sure that the ASNs of the two ASes are different
WHERE x.asn <> y.asn
// Return the prefix attribute of the Prefix node
RETURN DISTINCT p.prefix

Listing 2: Cypher query to find all Multiple Origin AS (MOAS)
prefixes in IYP (see 2 in Figure 3). Lines starting with // are
comments.

return clause. Listing 2 shows that a WHERE clause can be used to
specify constraints.

The third search in Figure 3 is a more complex example where
the pattern starts from a specific node and is branching. We refer
interested readers to Listing 3 for the corresponding Cypher query.

The above queries demonstrate how IYP conceals the superfluous
details of underlying datasets and focuses only on data semantics.
We demonstrate this further in the next section by reproducing
past studies with a set of IYP queries.
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// Find RPKI valid prefixes managed by CERN
MATCH (org:Organization)-[:MANAGED_BY]-(:AS)-[:ORIGINATE]-(pfx:Prefix)-[:CATEGORIZED]-(:Tag {label:'RPKI Valid'})
WHERE org.name = 'CERN'
// Find find popular hostnames in these prefixes (refered as pfx)
MATCH (pfx)-[:PART_OF]-(:IP)-[:RESOLVES_TO {reference_name:'openintel.tranco1m'}]-(h:HostName)
// Return the hostname's name
RETURN distinct h.name

Listing 3: Cypher query to find the popular hostnames corresponding to prefixes originated by ASes managed by CERN and
that are RPKI valid.

Table 2: Comparison between original RiPKI results and re-
produced results with IYP.

RPKI RPKI Top Bottom CDN
Invalid covered 100k 100k

RiPKI (2015) 0.09% 6% 4% 5.5% 0.9%
IYP (2024) 0.12% 52.2% 55.2% 61.5% 68.4%

4 Time to insight
To illustrate the ability of IYP to quickly provide insights about
the Internet, we revisit two studies: RiPKI [39], a study of the de-
ployment of RPKI in 2015; and DNS Robustness [3], a study of best
practices and consolidation of the DNS infrastructure.

These two studies are typical examples of insights that users can
obtain using IYP. We selected these two because they are related,
both providing insights into popular domain names, and are over
six years old. Therefore, we take this opportunity to refresh these
results and expand upon them with additional datasets. However,
the main objective of this section is to illustrate how IYP helps
in reducing time to insight. We only reproduce the main results
of these two papers, it is not our intention to revise the detailed
interpretation and recommendations provided by both papers.

We reproduce both studies using the same procedure. First, we
identify the key results reported by the study and the meaning
of these results. Then, we craft an IYP query for each of the key
results. To avoid overcomplicating queries with aggregation func-
tions, some queries only extract the required data, which we then
aggregate with a few lines of Python code. The queries are executed
on a recent snapshot of IYP (2024/05/01). For each study we provide
a Jupyter notebook8 containing the queries and code to reproduce
these results. Executing the notebooks refreshes the results using
the latest data available in the IYP public instance. By publicly shar-
ing these notebooks, we hope that researchers can reuse provided
IYP queries and build on top of them.

One caveat is that both papers defined popular domain names
using the Alexa Top 1 million list, which was retired in 2022. Instead
we use the Tranco Top 1 million list [22], a popular alternative to
Alexa that is designed to improve agreement across different lists
and stability over time. The DNS Robustness study is based on
zone files that are not available in IYP. Instead we use another DNS
dataset provided by OpenINTEL that is available in IYP. The other
datasets employed in these studies are similar to the ones integrated
into IYP.

8https://github.com/InternetHealthReport/iyp-notebooks.

4.1 Reproduction: RiPKI
4.1.1 Summary of original study. The RiPKI study [39] quantifies
the number of popular domain names that are protected by RPKI.
RPKI is a public-key infrastructure designed to help secure Inter-
net inter-domain routing and limit the impact of BGP hijacks and
operational mishaps. This study relies on four datasets collected in
2014 and 2015:

• Alexa Top 1 million (not available in IYP, substituted by
Tranco Top 1M).

• Domain name address resolution using Google DNS (similar
to the OpenINTEL DNS data available in IYP).

• RIPE RIS data to map IP to prefixes and originating ASes
(available in IYP).

• RPKI data (available in IYP).
The RiPKI approach is to retrieve the IP addresses for the Alexa

Top 1 million domains by querying Google’s public resolver. Then
it finds the IP prefix and originating ASes for these IP addresses
in RIPE RIS’s BGP data. And finally, it reports the percentage of
prefix/origin AS pairs that are registered in RPKI.

4.1.2 Original results: The tragic story of RPKI. The RiPKI paper
makes several key observations (summarized in Table 2). As ex-
pected, only a very low percentage (0.09%) of prefix/origin AS pairs
are invalid (i.e., the origin AS in BGP is different from the ones in
RPKI). For the whole Alexa Top 1M list, they found that only 6%
of the prefixes are covered by RPKI (valid and invalid). And sur-
prisingly, prefixes for the bottom 100k domains are better covered
by RPKI than the prefixes for the Top 100k domains, respectively
5.5% and 4.0%. The paper justifies that this is due to the very low
adoption of RPKI (0.9%) by CDNs in 2015.

4.1.3 Updated results: The happier story of RPKI. Using IYP we up-
date these results and report the status of RPKI for popular domains
in 2024. As mentioned above here we use the Tranco list instead of
Alexa and the DNS resolution data is provided by OpenINTEL.

The queries for this study search for patterns similar to the top
branch of the graph shown in Figure 4. We look for domain names
ranked in Tranco, retrieve their IP addresses, the corresponding
routed prefixes, and check their RPKI status. For instance, we pro-
vide the query to find the number of RPKI invalid prefixes for
domain names in Tranco in Listing 4.

Using IYP we found that the percentage of invalid announce-
ments has stayed very low (0.12%), and that 75% of them are due
to a wrong maximum prefix length in ROAs. However, we obtain
significantly different results for the overall RPKI coverage. We find
that more than half (52.2%) of the prefixes for Tranco Top 1M are
covered by RPKI, almost 9 times more than in 2015. The percentage

https://github.com/InternetHealthReport/iyp-notebooks
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// Resolve IP addresses from the Tranco Top 1 million list and count the number of RPKI invalid prefixes
MATCH (:Ranking {name:'Tranco top 1M'})-[:RANK]-(d:DomainName)-[:PART_OF]-(h:HostName)-[:RESOLVES_TO]-(:IP)-[:PART_OF]-

(pfx:Prefix)-[:CATEGORIZED]-(t:Tag)
WHERE d.name = h.name AND t.label STARTS WITH 'RPKI Invalid'
RETURN COUNT(DISTINCT pfx)

Listing 4: Find RPKI invalid prefixes for domain names in Tranco list. The RPKI status is provided as a tag that is either ’RPKI
Invalid’ or ’RPKI Invalid,more specific’ hence the STARTS WITH condition in the WHERE clause.

for CDNs, the Top 100k, and bottom 100k websites have increased
proportionally. The surprising finding of the original study is how-
ever still valid, we observe a lower RPKI coverage for the Top 100k
domains (55.2%) than for the bottom 100k domains (61.5%).

Using the ’Content Delivery Network’ tag provided by BGP.Tools
(see Figure 4) we found that the adoption of RPKI by CDNs has also
drastically increased since 2015, from 0.9% as reported by the RiPKI
study to 68.4%.

The significant increase in RPKI adoption observed for popular
domains between 2015 and 2024 is explained by the global RPKI
uptake in the recent years. In 2015 the RPKI deployment was almost
non-existent but it is now covering over 50% of the IPv4 global
routing table [23]. This increase explains the difference between
the results reported in the original RiPKI paper [39] and the ones
observed with recent data in IYP.

4.1.4 Discussion. Each of the reproduced values are obtained with
one or two queries that are usually three lines long (see Listing 4).
This is a significant improvement over the time-consuming steps
that the authors of the RiPKI paper had to go through, which include
collecting DNS data, as well as downloading and parsing BGP and
RPKI data.

As IYP inherently connects various datasets, we can further
leverage this capability to explore more data, thereby enriching our
insights into RPKI deployment. For example, modifying the query
that reports the RPKI coverage for CDN prefixes can get us the RPKI
deployments for each tag provided by BGP.Tools or any other AS
classification integrated in IYP. Doing so we found utterly disparate
RPKI deployments based on BGP.Tools tags. Networks classified as
Academic and Government have the lowest RPKI adoption (respec-
tively 16% and 21%) while DDoS Mitigation networks are among
the highest (76%). This could be explained, on the one hand, by the
prevalence of legacy space in academic and government networks
and the legal barriers impeding the addition of these prefixes into
RPKI [5], and on the other hand by the RPKI security benefits that
are useful for DDoS mitigation.

Again, our goal here is not to study RPKI deployment — as this
line of work may benefit from more in-depth analysis and interpre-
tation — but use a brief analysis to demonstrate the effectiveness of
IYP to combine multiple datasets and to provide insights quickly.

4.2 Reproduction: DNS robustness
4.2.1 Summary of original study. The second study focuses on the
robustness of the DNS ecosystem for popular domain names [3]. It
is mainly based on two longitudinal datasets spanning from 2009
to 2018:

• Alexa Top 1 million (not available in IYP, substituted by
Tranco).

• DNS zone files for the .com, .net, and .org Top Level Domain
(TLD) names (not available in IYP, substituted by OpenIN-
TEL [26, 35]).

This study surveys the implementation of DNS best practices
for popular .com, .net, and .org domain names. Although we re-
produced all results of this study using IYP (see Table 3 and 4 and
the accompanying Jupyter notebook), we focus here only on key
differences with original results.

4.2.2 Nameserver replicas (Ref. [3] §4.1).

Original results: In order to avoid a single point of failure in
DNS resolution, RFC 1034 and 2182 requires each DNS zone to
maintain two nameservers in two different locations. This study
finds that a large fraction of the studied domain names meet this
requirement (around 39%) or exceed it by deploying more than two
nameservers (around 20%), but still about a third (28%) do not meet
these requirements (13% are discarded due to limitations of using
only three zone files).

Updated results: To reproduce these results we have replicated
the same limitations as the original study’s dataset using DNS data
from OpenINTEL; focusing only on second level domain names
(SLDs) in the .com, .net, and .org zones (49% of the Tranco list) and
discarding domains that have no glue record in these zones. We
found that in May 2024 the percentage of domain names that exceed
the requirements has tripled since 2018 while both the percentage
for the domain names that meet and do no meet the requirements
has decreased significantly (see Table 3).

Despite the large differences in the absolute values, our results
corroborate with the consistent increasing trend of SLDs exceeding
requirements observed in the original study from 2009 to 2018. This
is also in line with a more recent study showing a marked increase
of replicas and adoption of anycast from 2017 to 2021 [30].

4.2.3 Shared infrastructure (Ref. [3] §5).

Original results: The DNS robustness study ends with the anal-
ysis of shared DNS infrastructure. It investigates the number of
popular domain names that share exactly the same set of name-
servers and found that half the domain names (median value) share
a set of namesservers with at least 163 other domain names. The
largest group contains 9k domain names that share the exact same
set of nameservers (see Table 4). Grouping nameservers by /24 pre-
fixes, they report larger groups of domain names, respectively, 3k
and 71k for the median and maximum values.

Updated results: Results obtained in 2024 with IYP are similar
(see Table 4). We observe much less concentration of domains when
grouped by nameservers but more when grouped by /24 prefixes.
The largest group contains 114k domain names whose nameservers
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Table 3: DNS best practice: Comparison between original DNS robustness results and reproduced results with IYP for .com, .net,
and .org domain names.

Coverage Discarded Meet NS Exceed NS Not meet NS In-zone
.com, .net, .org SLDs Requirements. Requirements Requirements Glue

DNS Robustness (2009-2018) 56 % 12-15 % ≈ 39 % ≈20 % 28% 69-73%
IYP (2024/05/01) 49 % 10 % 18 % 67 % 4% 76%

Table 4: DNS shared infrastructure: Comparison between
original DNS robustness results and reproduced results using
IYP for .com, .net, and .org domain names (Med. = Median,
Max. = Maximum).

Grouped by NS Grouped by /24
Med. Max. Med. Max.

DNS Robustness (2018) 163 9k 3k 71k
IYP (2024/05/01) 9 6k 3.9k 114k

Table 5: DNS shared infrastructure: Extended results using
IYP for all SLDs and BGP prefixes.

IYP (2024/05/01) Med. Max.

.com/.net/.org grouped by BGP prefix 4.1k 114k
All Tranco grouped by BGP prefix 6k 187k
All Tranco grouped by NS 15 25k

are all in the same /24 prefixes which confirms the increasing trend
observed by the original study.

4.2.4 Discussions. Both the RiPKI and this DNS study are good
showcases for IYP, because the approach for both studies essentially
consists inmerging different datasets in order to reveal new insights.
A common approach in Internet measurements and a task at which
IYP excels.

Noteworthy for us is the future work mentioned in the original
DNS paper [3]. The prospect of studying more than 3 TLDs, identi-
fying anycast prefixes, and using BGP data to refine the study is
left for future work. These are analysis that can be time consuming,
for example parsing BGP data, or need very specific datasets (e.g.,
anycast classification) but readily available in IYP. In fact the IYP
queries are even simpler when we are not replicating the limita-
tions of the original study (i.e., 3 TLDs and /24 grouping) as we
don’t need conditions to limit the query to certain domain names or
compute the /24 equivalent for each nameserver (interested readers
can see the queries in appendix, Listing 5 and Listing 6). The results
of using BGP prefixes instead of /24 prefixes for nameservers of
.com, .net, and .org are almost identical (Table 5), the median value
is at 4.1k instead of 3.9k and the maximum is unchanged, meaning
that the assumption about /24 prefixes made in the original paper
is sound. By removing the limit on the 3 TLDs (covering only half
of the list) and considering all domain names in Tranco, we find
that the group of domain names sharing the same nameservers has
increased; the median value almost doubled (9 to 15) which is ex-
pected as the number of studied domain names doubled. However,

the largest group has significantly increased (6k to 25k) suggest-
ing that domain names from other TLDs are more consolidated.
Similar observations are made when grouping the BGP prefixes of
nameservers for all Tranco domain names (Table 5).

5 New insights
We now present new findings we discovered while working on the
reproduction studies. These additional results highlight the versa-
tility of IYP for Internet data analysis. With all datasets pre-parsed
and uniformly structured, IYP allows us to seamlessly explore the
wide variety of available datasets from different perspectives.

Each of the papers presented in Section 4 studies a different as-
pect of the robustness of popular domains, one focusing on the best
practices for the nameservers and the other focusing on the deploy-
ment of RPKI of popular services. Reproducing these studies, we
found interesting ways to combine them and potential extensions.

5.1 Combining RiPKI and DNS Robustness
5.1.1 RPKI coverage for nameservers. The DNS robustness study
focuses only on DNS best practices, but one may also question the
deployment of RPKI for nameservers.

An IYP query for doing so is similar to the one we used for
the reproduction of the RiPKI study (see Section 4.1). However,
instead of fetching the IP address of popular hostnames, we fetch
the IP addresses of the corresponding nameservers and then the
corresponding BGP prefixes and RPKI status (similar to the central
branch starting from MANAGED_BY in Figure 4).

We found that 48% of all the prefixes hosting nameservers for
Tranco domain names are covered by RPKI, which is a bit lower than
the overall RPKI coverage observed for prefixes hosting popular
hostnames (52.2% in Table 2) and significantly lower than the 68.4%
of CDN prefixes that host the services. However, the concentration
of nameservers in a few DNS provider using RPKI means that 84%
of the Tranco domain names are managed by nameservers covered
by RPKI.

Overall, we find that RPKI coverage is driven by a few ASes and
prefixes in which nameservers and hostnames are concentrated.
Also, the RPKI deployment in the DNS infrastructure is lagging
behind that of content providers.

5.1.2 Web hosting consolidation and RPKI. Given the consolidation
of the DNS infrastructure reported in the DNS robustness study,
one may question the consolidation of hosting providers and its
impact on the RPKI results reported earlier (Table 2). RiPKI reports
only percentages of prefixes covered by RPKI, it is not investigating
the distribution of domains across prefixes (which made sense at
that time given the low value originally reported). To address this,
we simply count hostnames instead of prefixes in our queries (see
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Figure 5: Country-based SPoF in the DNS chain of Tranco
and Cisco’s Top 1M domain names.

Clou
dfl

are
13

33
5

Amaz
on

16
50

9
GoD

ad
dy

44
27

3
Aka

mai
21

34
2

Goo
gle

15
16

9 OVH
16

27
6

M
icr

os
of

t
80

75 Digi
Cert

16
55

2
Clou

DNS
20

33
91 NS1

62
59

7

ASN

1M
500K

200K
100K

50K
40K
30K
20K
10K

0
10K
20K
30K
40K
50K

100K
200K

500K
1M

N
um

be
ro

fD
om

ai
ns

Direct
Third Party
Hierarchical
Hierachical & Third Party
Log Scale

Figure 6: AS-based SPoF in the DNS chain of Tranco and
Cisco’s Top 1M domain names.

the RETURN statement in Listing 4). We found that, despite 52.2%
(Table 2) of all prefixes for Tranco being covered by RPKI, many
domains map to the same RPKI-covered prefixes, resulting in 78.8%
of Tranco domains actually covered by RPKI. Similarly for CDN
prefixes, while we report in Table 2 a coverage of 68.4%, the RPKI-
covered prefixes represent 96% of the domains hosted by these CDN
providers. These results highlight that prefixes in which domains
are concentrated tend to have better RPKI coverage, especially for
CDN prefixes.

5.2 SPoF in DNS chain
Another extension that we implemented is for the DNS robust-
ness study. In Section 4.2 we followed the same methodology as
the original paper, but used IYP. However, this methodology only

focuses on direct dependencies of domain names to their name-
servers, ignoring third-party and hierarchical dependencies that
happen when performing a complete DNS resolution. For example,
a resolver has to query the DNS root and .com nameservers to
resolve example.com. With the same intention of understanding
robustness in DNS infrastructure, we are able to extend the anal-
ysis beyond direct dependencies using several imported datasets
(Tranco, Cisco Umbrella, pfx2asn from BGPKIT, DNS dependency
graph [35], delegated files from NRO). This approach helped us
identify cascading single points of failure (SPoF) that spread over
the DNS chain dependencies while being aware of DNS working
mechanisms (i.e., usage of glue records). We define hierarchical
dependencies as dependencies due to the inner nature of the hierar-
chical nature of DNS; root servers (excluded here), TLD, SLD, third
level, etc. Third-party dependencies are due to outsourcing; e.g.,
foo.com has ns.bar.com as nameserver and bar.com has ns.goo.com
as nameserver, and so on.

We investigate SPoF in the DNS chain of Tranco and Cisco’s Top
1 Million List at two different levels of granularity: country and
AS. A country-based SPoF suggests sovereignty consequences that
are associated to DNS (computed using the country code of ASes
found in RIRs delegated files), while the AS-based SPoF focuses on
consolidation of DNS providers.

Figure 5 shows that direct dependencies dominate the DNS
ecosystem, but there is also a significant extent of third-party de-
pendency towards the US. This indicates that DNS hosting services
mostly rely on ASes registered in the US for operating their DNS
infrastructure. Furthermore, we observe a large hierarchical de-
pendency on Russia, China, and the UK. This is due to numerous
domains managed by nameservers that may be outside the country,
but where the country-code top-level domains are under the control
of an organization within the country.

A more detailed picture emerges in Figure 6 in which we see that
different ASes offer different types of services (direct and indirect)
to the DNS ecosystem. For example, on one hand, Akamai is mainly
seen as a third-party dependency, meaning that it hosts mainly
DNS services for DNS hosting companies rather than end-customer
nameservers. On the other hand, GoDaddy is focused primarily on
DNS services for end customers (direct dependencies).

Overall, this inceptive analysis shows that DNS is a complex
ecosystem with an intricate set of interdependencies not always
immediately clear from an end-user perspective. IYP enables us
to explore and delve deep into these interdependencies thanks to
the graph data structure and availability of the different datasets
needed for this exploration.

6 Embracing IYP
After developing and experimenting with IYP, it has become highly
integrated into our research routine. It is now our preferred way
to quickly access and investigate the multiple datasets we use in
our projects. It is also our go-to tool to satisfy curiosity during
brainstorming sessions or manual data analysis.

In this section we share our experience using IYP for research,
describe potential implications for data sharing and reproducibility,
and finally discuss our vision for IYP and its role in the Internet
measurement community.
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6.1 Lessons learned
Local instance. In our daily routine we frequently use both the

IYP public instance and personal local instances, as we found that
they each serve different purposes. The IYP public instance is read-
only and is useful for sporadic queries to address questions raised
during discussions or exploratory work. However, in-depth analysis
requires numerous queries or queries scanning a large amount of
data, which are better served via a local instance of IYP. With the
help of docker and the IYP weekly snapshots, it is easy to start a lo-
cal instance of IYP, requiring no particular hardware and able to run
on any modern laptop. A local instance offers the benefits of adding
new nodes and relationships to the knowledge graph, whether they
are from additional (and possibly confidential) datasets or serving
as supplementary knowledge that would facilitate subsequent anal-
ysis. For example, for the SPoF analysis conducted in Section 5.2 we
added temporal SPoF relationships in the knowledge graph to main-
tain that information in the database itself. Or, more commonly,
one can simply tag the set of studied resources so that subsequent
queries are simplified.

Query precision. Queries can express different levels of details.
For example, the query in Listing 1 is generic. It searches for any
prefix originated by an AS regardless of where the data comes from.
As mentioned in Section 2.2, each relationship in IYP has a property
that exposes the name of the dataset behind that relationship. This
property is helpful to check a posteriori the provenance of the data,
or to formulate a precise query targeting only certain datasets. Pre-
cise queries give better control on the underlying datasets, which
may be preferred for projects involving dataset limitations. In gen-
eral, generic queries are preferred in exploratory data analysis for
discovering unexpected relationships. The outcome for these two
type of queries may also vary over time, precise queries depend
solely on the selected datasets while generic ones may depend on
multiple datasets. Hence precise queries may have a more expected
output but could have a shorter lifespan.

Augmented datasets. After integrating more and more datasets
into IYP, we realized that adding a new dataset brings mutual ben-
efits to both IYP and the data provider. Not only will a new dataset
expand IYP’s accumulated knowledge, it will also significantly aug-
ment the new dataset by connecting it to all the datasets already
available in IYP. For example, the OpenINTEL tranco1m dataset
(see Table 1) is essentially a list of hostnames and IP addresses, but
the integration to IYP extends it to the corresponding BGP prefixes,
origin AS, IRR and RPKI status, delegated prefixes, nameservers,
and any other entities related to these, enabling insightful studies
like the two reproduced in Section 4.

Datasets comparison. Thanks to the data unification of the knowl-
edge graph, IYP has also proven to be an effective tool for comparing
datasets. Though we generally avoid importing redundant datasets,
there are instances where this can be useful in IYP. For example,
BGPKIT’s pfx2asn and IHR’s ROV datasets both map prefixes to
their origin AS. By querying the differences between these two
datasets, we discovered an error that affected results for certain
IPv6 prefixes in the BGPKIT dataset. Following our own recom-
mendations (Section 2.3), we addressed this by contacting the data
provider, leading for the error to be fixed at the origin and corrected

in subsequent IYP snapshots. This error would have been difficult
to discover and would have required significant work to compare
datasets directly, but is rather trivial using IYP.

6.2 Sharing queries
We believe that IYP can also help facilitate the sharing of research
methods and reproducibility.We encourage researchers using IYP to
include their queries and the date of the snapshots used to produce
their results. This can either be included in an appendix to a research
paper or an online document such as the two Jupyter notebooks
reproducing the two studies of Section 4. Additionally, the use of
version control is preferred to accommodate any changes to IYP in
the future.

Sharing queries is straightforward, yet it empowers anyone to
retrieve the exact same data, which is crucial for researchers repli-
cating or building upon past studies. Furthermore, we have found
that sharing queries may be even more useful than sharing datasets.
Since the same query can be executed on newer snapshots of IYP, it
simplifies the process of reproducing and updating previous works.
For instance, the two Jupyter notebooks we share with this paper
query the IYP public instance. Re-executing the notebooks will
produce all the results presented in Section 4, but will use the
most recent data by default. This makes the studies reproducible
on-demand.

6.3 Community engagement
This paper represents the results of our efforts to build a practical
knowledge graph for Internet resources. The curated list of datasets
currently available in IYP and the ontology are based on our experi-
ence with networking data, discussions with different stakeholders,
and numerous experiments with IYP. Although we are planning to
continue improving IYP and operate the public instance, we envi-
sion IYP as a community-driven project where dataset curation and
ontology definitions evolve with the Internet measurement commu-
nity. Inspired from the Wikidata community [1], maintaining the
knowledge graph underlying many Wikimedia projects, we believe
that the long-term success of IYP resides in the engagement with
the Internet measurement community for discussing new datasets
and terms for the ontology. Consequently, we invite researchers,
data providers, and interested parties to participate in discussions
in the IYP Github pages.9

7 Limitations
IYP has several limitations. This section discuss those that are
inherent to its design or common to large data collections.

Learning curve. Despite our efforts to make IYP as accessible as
possible (e.g., providing database snapshots, docker images, exam-
ple queries), there are still some requirements before being able
to get started using IYP. The first is Cypher, which is the most
intuitive graph querying language we have experimented with,
but not broadly used in the measurement community. Fortunately
the Neo4j community has produced rich educational material for
Cypher, which helps to significantly lower the barrier to entry. The
second is getting accustomed with the datasets available in IYP

9https://github.com/InternetHealthReport/internet-yellow-pages.

https://github.com/InternetHealthReport/internet-yellow-pages
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and their modeling. We provide documentation for all imported
datasets as well as example queries for different tasks. Users should
be aware that documentation is inevitably growing with the num-
ber of integrated datasets. For future work, we are also considering
the use of Large Language Models to bridge the gap between users
and crafting queries for IYP.

Longitudinal analysis. IYP is not particularly well-suited for lon-
gitudinal analysis. This is not a limitation of knowledge graphs per
se. However, this significantly complicates queries for the graph.
Consequently, we opted to construct knowledge graphs that repre-
sent snapshots in time. This decision is a trade off between features
and usability. We conducted a longitudinal study (not presented
here) by running multiple IYP instances representing different snap-
shots in time. While feasible, we found the process cumbersome
as it involves fetching data from multiple instances and merging
results ourselves. A variant of IYP including temporal dynamics
could be an interesting follow up project.

Data quality. The data quality of IYP is closely related to the
quality of imported datasets. While IYP can assist in verifying con-
sistency, completeness, and accuracy of datasets (see Section 6),
users should be aware of the original datasets’ limitations to ac-
curately interpret results and maximize the utility of IYP. This
challenge is inherent to data analysis as a whole, and we believe
that documenting and sharing experiences is the most effective
way to tackle it.

Maintainability. IYP relies on data collected by various organi-
zations, each facing different challenges in consistently providing
data over time. We aim to import datasets that are sustainable (Sec-
tion 2.1). Some projects, such as RouteViews and RIPE RIS, have
demonstrated incredible longevity. However, it is essential to ac-
knowledge that profound changes can occur to imported datasets
and the IYP ontology. The unification of data in IYP helps to handle
some of these changes but still efforts will be necessary to maintain
IYP consistency over time.

8 Related Work
The benefits and challenges in sharing Internet measurement data
has been discussed for at least two decades. Allman et al. [3] pro-
posed the Scalable Internet Measurement Repository, a database
designed to facilitate the sharing of data, including dataset metadata
and user information. This inspired development of the Internet
Measurement Data Catalog (DatCat) [29] from CAIDA. These ini-
tiative were followed by the DHS project, IMPACT [17] (formerly
PREDICT), focusing on cybersecurity datasets and ensuring that
data is shared in a controlled manner.These are prime examples
of data sharing platforms that foster collaboration and innovation.
However, they do not support directly querying the various datasets,
as possible in IYP.

More similar to IYP’s approach, the Internet Geographic Data-
base (iGDB) [4] is a database combining physical and logical (e.g.,
AS and IP-level) Internet topology data, enabling visualization and
geographic analysis. In addition, MISP is a collaborative platform
with various taxonomies for sharing threat intelligence [38]. Al-
though these tools are tailored for specific use-cases and datasets,

we plan to explore ways to incorporate their datasets into IYP, or
integrate IYP into these tools.

The community has also proposed ways to reduce time to insight
for data analysis. For example, BGPstream [27] facilitates access to
BGP data by unifying access to the RIS and RouteViews archives.
These types of tools are complementary to IYP. One may find
insights with IYP and perform a longitudinal analysis with these
tools, or use IYP to enrich the information provided by them.

The literature on knowledge graphs is vast, we refer interested
reader to surveys [19, 28, 41] that provide an overview of the differ-
ent techniques of constructing and using knowledge graphs. To the
best of our knowledge, IYP is the first knowledge graph focused on
Internet data.

9 Ethics
Open datasets are the core of IYP. We ensure for all datasets that
their license or AUA permits integration into IYP. We compile all
datasets with their respective license, required citations, and links
to the original data in one central acknowledgment page, even if not
required by all datasets.10 Therefore, to the best of our knowledge,
this work does not raise any ethical issues.

10 Conclusion
In this paper, we presented IYP, a knowledge graph for Internet
resources. By unifying various Internet measurement datasets into
a single harmonized database, IYP enables us to quickly gain in-
sights about the Internet. We demonstrated this by reproducing and
extending two studies on RPKI and DNS. Additionally, we discussed
how IYP can enhance results sharing and reproducibility of past
studies.

IYP is poised to evolve with the Internet measurement commu-
nity, incorporating new terminology into its ontology and integrat-
ing new datasets. Moreover, IYP paves the way for exploring the
numerous knowledge graph applications to Internet data, including
knowledge reasoning [11], recommender systems [15], and various
applications based on knowledge graph embeddings [41].
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Table 6: List of entities (node types) in IYP ontology with their description. Important properties are mentioned in the
descriptions but these are not comprehensive.

Entity Description
AS Autonomous System, uniquely identified with the 𝑎𝑠𝑛 property.
AtlasMeasurement RIPE Atlas Measurement, uniquely identified with the 𝑖𝑑 property.
AtlasProbe RIPE Atlas probe, uniquely identified with the 𝑖𝑑 property.
AuthoritativeNameServer Authoritative DNS nameserver for a set of domain names, uniquely identified with the 𝑛𝑎𝑚𝑒 property.
BGPCollector A RIPE RIS or RouteViews BGP collector, uniquely identified with the 𝑛𝑎𝑚𝑒 property.
CaidaIXID Unique identifier for IXPs from CAIDA’s IXP dataset.
Country Represent an economy, uniquely identified by either its two or three character code

(properties 𝑐𝑜𝑢𝑛𝑡𝑟𝑦_𝑐𝑜𝑑𝑒 and 𝑎𝑙𝑝ℎ𝑎3).
DomainName Any DNS domain name that is not a FQDN (see HostName), uniquely identified by the 𝑛𝑎𝑚𝑒 property.
Estimate Represent a report that approximate a quantity, for example the World Bank population estimate.
Facility Co-location facility for IXPs and ASes, uniquely identified by the 𝑛𝑎𝑚𝑒 property.
HostName A fully qualified domain name uniquely identified by the 𝑛𝑎𝑚𝑒 property.
IP An IPv4 or IPv6 address uniquely identified by the 𝑖𝑝 property. The 𝑎𝑓 property (address family)

provides the IP version of the prefix.
IXP An Internet Exchange Point, loosely identified by the 𝑛𝑎𝑚𝑒 property or using related IDs

(see the EXTERNAL_ID relationship).
Name Represent a name that could be associated to a network resource (e.g., an AS), uniquely identified

by the 𝑛𝑎𝑚𝑒 property.
OpaqueID Represent the opaque-id value found in RIR’s delegated files. Resources related to the same

opaque-id are registered to the same resource holder. Uniquely identified by the 𝑖𝑑 property.
Organization Represent an organization and is loosely identified by the 𝑛𝑎𝑚𝑒 property or using related IDs

(see the EXTERNAL_ID relationship).
PeeringdbFacID Unique identifier for a Facility as assigned by PeeringDB.
PeeringdbIXID Unique identifier for an IXP as assigned by PeeringDB.
PeeringdbNetID Unique identifier for an AS as assigned by PeeringDB.
PeeringdbOrgID Unique identifier for an Organization as assigned by PeeringDB.
Prefix An IPv4 or IPv6 prefix uniquely identified by the 𝑝𝑟𝑒 𝑓 𝑖𝑥 property. The 𝑎𝑓 property (address family)

provides the IP version of the prefix.
Ranking Represent a specific ranking of Internet resources (e.g., CAIDA’s ASRank or Tranco ranking).

The rank value for each resource is given by the RANK relationship.
Tag The output of a classification. A tag can be the result of a manual or automated

classification. Uniquely identified by the 𝑙𝑎𝑏𝑒𝑙 property.
URL The full URL for an Internet resource, uniquely identified by the 𝑢𝑟𝑙 property.

// List /24 prefixes of nameservers for .com/.net/.org domain names in Tranco
MATCH (r:Ranking {name:'Tranco top 1M'})-[:RANK]-(d:DomainName)-[:MANAGED_BY]-(a:AuthoritativeNameServer)
-[:RESOLVES_TO]-(i:IP {af:4})
WHERE d.name ENDS WITH '.com' OR d.name ENDS WITH '.net' OR d.name ENDS WITH '.org'
RETURN d, COLLECT(DISTINCT REDUCE(pfx = "", n IN SPLIT(i.ip, '.')[0..3] | pfx + n + ".")) AS pfx

Listing 5: Query used to reproduce results from DNS Robustness [3] on shared infrastructure and using /24 grouping (Table 4).
This query reproduces the original paper’s setup by selecting only .com, .net, and .org domain names and computing /24 prefixes
corresponding to each nameserver.

// List prefixes of nameservers for all domain names in Tranco
MATCH (r:Ranking {name:'Tranco top 1M'})-[:RANK]-(d:DomainName)-[:MANAGED_BY]-(a:AuthoritativeNameServer)
-[:RESOLVES_TO]-(i:IP {af:4})-[:PART_OF]-(pfx:Prefix)
RETURN d, COLLECT(DISTINCT pfx)

Listing 6: Query extending results from DNS Robustness [3] on shared infrastructure by looking at all domain names in Tranco
and the BGP prefix of the corresponding nameservers (Table 5).
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Table 7: List of relationships in IYP ontology with their description. Some properties are mentioned in the descriptions but
these are not comprehensive.

Relationship Description
ALIAS_OF Equivalent to the CNAME record in DNS. It relates two HostNames.
ASSIGNED Represent the allocation by a RIR of a network resource (AS, Prefix) to a resource holder (see

OpaqueID). Or represent the assigned IP address of an AtlasProbe.
AVAILABLE Relate ASes and Prefixes to RIRs (in the form of an OpaqueID) meaning that the resource is not

allocated and available at the related RIR.
CATEGORIZED Relate a network resource (AS, Prefix, URL) to a Tag, meaning that the resource has been

classified accordingly to the Tag. The 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑛𝑎𝑚𝑒 property provide the name of
the original dataset/classifier.

COUNTRY Relate any node to its corresponding country. This relation may have different meaning depending
on the original dataset (e.g., geo-location or registration).

DEPENDS_ON Relate an AS or Prefix to an AS, meaning the reachability of the AS/Prefix depends on a certain AS.
EXTERNAL_ID Relate a node to an identifier commonly used by an organization. For example, PeeringDB assigns

unique identifiers to IXPs (see PeeringdbIXID).
LOCATED_IN Location of a resource at a specific geographical or topological location. For example,

co-location Facility for an IXP or AS for an AtlasProbe.
MANAGED_BY Entity in charge of a network resource. For example an AS is managed by an Organization,

a DomainName is managed by an AuthoritativeNameServer.
MEMBER_OF Represent the membership to an organization. For example, an AS is member of an IXP.
NAME Relate an entity to its usual or registered name. For example, the name of an AS.
ORIGINATE Relate a Prefix to an AS, meaning that the prefix is seen as being originated from that AS in BGP.
PARENT Relate two DomainNames and represent a zone cut between the parent zone and the more

specific zone.
PART_OF Represent that one entity is a part of another. For example, an IP address is a part of an IP Prefix,

a HostName is a part of a DomainName.
PEERS_WITH Represent the connection between two ASes as seen in BGP. It also include peerings between ASes

and BGPCollectors.
POPULATION Indicate that an AS hosts a certain fraction of the population of a country. It also represent the

estimated population of a country.
QUERIED_FROM Relate a DomainName to an AS or Country, meaning that the AS or Country appears in the Top 100

AS or Country to query the most the DomainName (as reported by Cloudflare radar).
RANK Relate a resource to a Ranking, meaning that the resource appears in the Ranking.

The 𝑟𝑎𝑛𝑘 property gives the exact rank position.
RESERVED Indicate that an AS or Prefix is reserved for a certain purpose by RIRs or IANA.
RESOLVES_TO Relate a HostName to an IP address, meaning that a DNS resolution resolved the corresponding IP.
ROUTE_ORIGIN
_AUTHORIZATION Relate an AS and a Prefix, meaning that the AS is authorized to originate the

Prefix by RPKI.
SIBLING_OF Relate ASes or Organization together, meaning that they represent the same entity.
TARGET Relate an AtlasMeasurement to an IP, HostName, or AS, meaning that an Atlas measurement is

setup to probe that resource.
WEBSITE Relate a URL to an Organization, Facility, IXP, AS, representing a common website for the resource.
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Table 8: List of data providers and datasets currently integrated into IYP. Some organizations provide multiple datasets.

Organization Dataset Name / Description URL

Alice-LG

IXP route server looking glass snapshots https://github.com/alice-lg/alice-lg
AMS-IX https://lg.ams-ix.net
BCIX https://lg.bcix.de
DE-CIX https://lg.de-cix.net
IX.br https://lg.ix.br
LINX https://alice-rs.linx.net
Megaport https://lg.megaport.com
Netnod https://lg.netnod.se

APNIC AS population estimate https://stats.labs.apnic.net/aspop
BGPKIT as2rel, peer-stats, pfx2as https://data.bgpkit.com

BGP.Tools AS names, AS tags https://bgp.tools/kb/api
Anycast prefix tags https://github.com/bgptools/anycast-prefixes

CAIDA AS Rank https://doi.org/10.21986/CAIDA.DATA.AS-RANK
IXPs Dataset https://www.caida.org/catalog/datasets/ixps

Cisco Umbrella Popularity List https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
Citizen Lab URL testing lists https://github.com/citizenlab/test-lists

Cloudflare
Cloudflare Radar API endpoints

https://radar.cloudflare.comradar/dns/top/ases, radar/dns/top/locations,
radar/ranking/top, radar/datasets

Emile Aben AS names https://github.com/emileaben/asnames
IHR Country Dependency, AS Hegemony, ROV https://ihr.iijlab.net
Internet Intelligence Lab AS to Organization Mapping https://github.com/InetIntel/Dataset-AS-to-Organization-Mapping
NRO Extended allocation and assignment reports https://www.nro.net/about/rirs/statistics

OpenINTEL tranco1m, umbrella1m, ns https://data.openintel.nl/data
DNS Dependency Graph https://dnsgraph.dacs.utwente.nl

Packet Clearing House Daily routing snapshots https://www.pch.net/resources/Routing_Data
PeeringDB API endpoints: fac, ix, ixlan, netfac, org https://www.peeringdb.com

RIPE NCC AS names, RPKI https://ftp.ripe.net/ripe
RIPE Atlas measurement information https://atlas.ripe.net

SimulaMet rDNS data https://rir-data.org
Stanford ASdb dataset https://asdb.stanford.edu
Tranco Tranco list https://tranco-list.eu
Virginia Tech RoVista https://rovista.netsecurelab.org
World Bank Indicators API: Country Population Indicator https://www.worldbank.org
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