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Abstract—Monitoring delays in the Internet is essential to
understand the network condition and ensure the good function-
ing of time-sensitive applications. Large-scale measurements of
round-trip time (RTT) are promising data sources to gain better
insights into Internet-wide delays. However, the lack of efficient
methodology to model RTTs prevents researchers from leveraging
the value of these datasets. In this work, we propose a log-normal
mixture model to identify, characterize, and monitor spatial and
temporal dynamics of RTTs. This data-driven approach provides
a coarse grained view of numerous RTTs in the form of a graph,
thus, it enables efficient and systematic analysis of Internet-
wide measurements. Using this model, we analyze more than
13 years of RTTs from about 12 millions unique IP addresses
in passively measured backbone traffic traces. We evaluate the
proposed method by comparison with external data sets, and
present examples where the proposed model highlights interesting
delay fluctuations due to route changes or congestion. We also
introduce an application based on the proposed model to identify
hosts deviating from their typical RTTs fluctuations, and we
envision various applications for this empirical model.

Index Terms—RTT, backbone traffic, mixture model

I. INTRODUCTION

From the early years of the Internet, round-trip time (RTT)
is a key indicator of network conditions. Consequently, the
research community has proposed numerous techniques for
accurately estimating RTTs, ranging from Karn’s algorithm
for TCP congestion control [22], to recent work on detailed
hop-by-hop measurements [27]. Algorithms estimating RTT
from passive measurements [21], [35] have been particularly
valuable to assess the network performance at large-scale. For
example, they enabled researchers to measure RTT fluctuations
[16], [14] on backbone networks or residential broadband ac-
cess [26], and to understand the impact of the RTT distribution
on TCP flow control [34].

Past work commonly measured RTT from numerous hosts
by means of the median RTT, but, several studies [34], [14],
[26] controversially reported that the RTT distribution of
various flows is characterized by several distinct modes. Figure
1 depicts two RTT distributions of hosts seen at a backbone
link and the corresponding median values. One can easily
identify four distinct modes (or peaks) in the upper plot and
two in the lower one. The values of these modes are of prime
importance as they represent the typical RTTs experienced by
large populations of hosts, whereas the overall median RTT
is here of limited interest. For example, the median value
for the lower plot of Figure 1 is significantly varying as the
number of hosts for the two peaks is fluctuating, although,

the typical RTTs (i.e. the peaks values) for these hosts are
constant. Understanding the spatial and temporal dynamics of
these typical RTTs is critical for various aspects of networking,
including, topology models, geolocation, content delivery and
Internet security.

In this work, we emphasize that thorough large-scale RTT
studies should shift the focus to multimodal-based analysis
in order to understand the typical RTT fluctuations of nu-
merous related hosts at once. Consequently, we propose a
model to monitor mixed distributions in RTT measurements.
The proposed approach, first, uncovers typical RTTs with a
mixture model, then, it correlates the typical RTTs identified
at different points in time, finally, it formalizes the time
evolution of the typical RTTs as a graph. To the best of
our knowledge, this is the first attempt to date that permits
systematic and efficient monitoring of RTT distribution mix-
ture. As the proposed model summarizes and characterizes
the dynamics of numerous RTT measurements, it allows one
to comprehend typical RTT fluctuations experienced on the
Internet and identify abnormal delays alterations.

We evaluate the proposed model with RTTs from 12 mil-
lions unique IP addresses collected during 13 years of back-
bone traffic. Using external datasets (i.e. geolocation database
and BGP route information) and basic techniques from graph
theory, we validate the relevance of resulting graphs in three
ways. (1) We demonstrate that the proposed model permits to
cluster hosts from the same geographical location, regardless
their IP address and corresponding autonomous system (AS).
(2) We present an application that identifies RTT fluctuations
experienced by a large number of hosts due to infrastructure-
wide events (e.g. AS path change or congestion). (3) We also
introduce an application to compare raw RTT values of a single
IP with the RTT dynamics uncovered by the proposed model,
hence, highlight deviating hosts behavior due to local issues
(e.g. overloaded host, Internet connectivity issues). The new
traffic delay insights uncovered by the proposed method are
valuable for various applications based on Internet delays (e.g.
server selection algorithm) or inspecting Internet infrastructure
(e.g. AS level topology).

II. BACKGROUND

A. Traffic Traces

All results presented in this article are obtained with traffic
from the MAWI archive [12], which is a collection of traffic
traces captured at a transit link between the WIDE backbone



network (AS 2500) and a commercial ISP. The traffic is daily
measured between 14:00 and 14:15 JST since January 2001.
In this work we analyze 4678 traces accounting for more than
13 years of Internet traffic (Jan. 2001 to Mar. 2014). All traces,
with scrambled IP addresses and without packet payload, are
freely available on the Internet. In this work, however, we
had access to the original traces with unmodified addresses to
validate the results of the proposed model.

B. Per-host RTT Estimation
The estimation of the RTTs in the MAWI traces is done

with a simple and fast technique based on Karn’s algorithm
[22]. Namely, we compute samples delay δ = θACK − θSEQ
where θSEQ is the observation time of a TCP packet with
a certain sequence number, and θACK , the observation time
of its corresponding acknowledgment. Retransmitted packets
are ignored as the corresponding acknowledgment might be
duplicated thus bias the measure. Notice that δ is computed
from a pair of packets, and it represents the delay between
the MAWI measurement point and the host that sent the
acknowledgment. Therefore, a single TCP flow allows us to
measure numerous δ for two end-points. Then, the daily RTT
of a host A is the median value of all δ corresponding to A.
Nonetheless, to compute robust estimations, and because of
RTT significant variations [7], we keep only median values
that are computed from at least 5 δ values. This operation is
repeated for every traces to produce RTT time series for each
host. Our dataset consists of RTT estimates from 12 millions
unique IP addresses from January 2001 to the end of March
2014.

As we expect end-points within the WIDE network to have
significantly lower RTTs than other hosts, we classify hosts
into two categories using the routers MAC address. RTT of
hosts that are behind the router on the WIDE network are
refered as RTTIN and other RTTs are refered as RTTOUT .

C. Observations
Figure 1 illustrates the distribution of the RTTOUT and

RTTIN for a typical MAWI trace (i.e. 2014/03/07). Both
distributions are multimodal; for RTTOUT , we observe four
prominent RTT values ranging between 25 and 300 ms, while,
RTTIN features two main RTT values between 1 to 10 ms.
These observations confirm the expected difference between
the range of RTTIN and RTTOUT . Intuitively, prominent
values in RTTOUT discriminate hosts from distinct countries,
whereas RTTIN highlights different sets of hosts within
Japan. Estimating the exact number of typical RTTs from
histograms similar to the ones of Figure 1 is hazardous,
because the number of local maxima dramatically varies with
the resolution of the histogram (i.e. bin size) and the scale
of the axes. The following section presents the proposed
methodology to systematical uncover the typical RTTs and
monitor their time evolution.

III. METHODOLOGY

As depicted in Figure 3 the input of the proposed method-
ology is a set of host RTTs time series, which are analyzed in
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Fig. 1. Distribution of RTTIN and RTTOUT for MAWI traffic collected
on the 7th of March 2014.
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Fig. 2. Results of the log-normal mixture model for RTTs from MAWI traffic
collected on the 7th of March 2014.

three key steps:
1) uncover the daily RTT distributions using a mixture

model,
2) link RTT distributions from similar sub-population of

IPs across time,
3) formalize RTTs time evolution in a graph for further

systematical analysis.
Thereby, the result of the proposed methodology is a graph that
characterizes the RTT dynamics of hosts with similar Internet
delay behavior.

A. Mixture Model

The first step aims to detect the typical RTTs in a trace
and estimate their distributions. This is a classical problem
in statistics that is addressed by mixture models. For this
research, the mixture model should be able to identify an
unknown number of mixed component with a low compu-
tational cost in order to analyze a large number of RTT
measurements. The Dirichlet process mixture model [9] is the
natural candidate for this task as it is a generalization of finite
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Fig. 3. Overview of the proposed method using two traces. Left: Typical RTT distributions are uncovered with a mixture model. Center: Uncovered distributions
similarities are summarized in the transition matrix, T . Right: The distributions and their dynamics are formalized as a graph.

mixture models. We employ and recommend the recent varia-
tional inference algorithm for Dirichlet process mixture model
[10] as it is significantly faster that the usual algorithm using
Monte-Carlo Markov Chain [20]. The methodology proposed
in this article, however, is not bound to a specific mixture
model; we only assume that the mixture model uncovers an
unknown number of typical RTTs for each trace and estimate
the mean and variance (µ, σ2) of their distributions.

Our experiments revealed that log-normal distribution fits
better our RTT measurements than the normal distribution.
We confirmed this observation by computing the Bayesian
Information Criterion (BIC) for both distributions and found
a significant difference in favor of the log-normal distribution.
Consequently, we feed the mixture model with the logarithm
(base 10) of our RTT measurements and obtain the mean and
variance of the RTT distributions in the log-space. The mean
RTT of the identified distribution, (µ, σ2), is hence equal to
10µ.

Figure 2 depicts an example of the mixture model results
using the RTTs of Figure 1. Distributions with a small variance
emphasize particular RTTs values that are prominent in the
trace, whereas, distributions with very large variance give
no information about typical RTTs. The mixture model is
independently analyzing daily measurements, thus, we obtain
for every days a variable numbers of RTT distributions. To
track the time evolution of the typical RTTs the next step is
to connect the distributions identified at two distinct days.

B. Temporal Tracking

To find the relationships between two sets of distributions
identified at different days, we implement a simple proba-
bilistic model using the parameters uncovered by the mixture
model and the IP addresses appeared in both sets. Namely,
we derive the transition matrix T describing the similarities
between the distributions in both sets.

Let P d = (µi, σ
2
i ), i ∈ [1,m] be the parameters of the m

distributions identified on day d, and P d
′

= (µj , σ
2
j ), j ∈

[1, n], be those for the n distributions identified on day d′.
Using the probability density function of each distribution,

f(x;µ, σ2) =
1

σ
√

2π
e−

1
2 ( x−µσ )2

and the RTTs of the hosts monitored both days, Xd and Xd′ ,
we compute the m-by-n transition matrix

Ti,j =
f(Xd;P di ) · f(Xd′ ;P d

′

j )∑
k

∑
l

f(Xd;P dk ) · f(Xd′ ;P d
′

l )
.

Consequently, Ti,j is the probability of the distributions i
and j to stand for the same set of hosts.

C. Graph Construction

A transition matrix relates distributions identified at two
different days, therefore, a sequence of matrices allows us to
connect numerous distributions standing for an extended pe-
riod of time. To ease the manipulation of numerous transition
matrices, we merge them in a weighted graph in which the
vertices are the identified distributions, and edges are weighted
with the probabilities from the transition matrix. We discard
edges with null or low weight as they connect distributions
that are unlikely related.

Given the distributions P = P d, d ∈ [1, k] for k days and all
corresponding transition matrices T d,d+∆, d ∈ [1, k − 1],∆ ∈
[1, k − 1]. Then, the graph G = (V,E) consists of the set
of vertices V = P , and the set of edges E connecting
vertices that have a transition probability higher than the
uniform distribution, ∀e ∈ E, e = (P di , P

d′

j ) where i ∈ [1,m],
j ∈ [1, n] and T d,d

′

i,j > 1/mn. Thereby, the proposed model
avoids erroneous distributions uncovered by the mixture model
(i.e. distributions standing for no typical RTT values), such as
the distributions with very large variance of the upper plot of
Figure 2.

In summary, the graph G is a network of RTTs distribu-
tions that are connected with weighted edges proportional to
the hosts they represent. Consequently, a cluster of strongly
connected nodes in G represents a set of RTT distributions of
correlated IP addresses, and the parameters of the distributions
along this path allows one to accurately quantify the RTT time
evolution for these IP addresses.

IV. EVALUATION

We now present several examples of graph constructed
with the proposed model and simple techniques to manipulate
them. This evaluation is conducted with the 13 years of traffic
presented in Section II. First, we present broad observations
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Fig. 4. Results of the mixture model using all MAWI traces from January
2001 to the end of March 2014.

using the whole dataset. Second, we verify the ability of
the model to cluster hosts with similar RTTs by looking
at the geographical locations of hosts in sets of strongly
connected nodes. Then, we introduce a simple application
monitoring the dynamics of the typical RTTs uncovered by the
model, and study their relationships with BGP route changes,
traffic throughput and network congestion. Finally, we present
another application of the proposed model to identify hosts
that deviates from their typical RTT fluctuations.

A. Longitudinal study

The number of RTT distributions that are identified for
each trace obviously depends on the underlying mixture model
(Section III-A) and corresponding parameter values. Using the
variational inference algorithm for Dirichlet process mixture
model [10], and prior weights equal to 0.1, we obtained a total
of 13.5 components per day for both RTTOUT and RTTIN .
Figure 4a depicts the cumulative distribution of the number
of identified components per day for RTTOUT and RTTIN .
We observe that the number of components for RTTOUT
is usually larger than the one for RTTIN , meaning that
more characteristic RTTs are observed for the hosts that are
outside the WIDE network. This is mainly because RTTOUT
represents a larger and broader population of hosts that are
situated in various networks and geographical locations. The
distribution of 10µ, the mean RTT of each component (Fig.
4b), shows that 60% of the components identified in RTTIN
feature a mean RTT below 15 ms, whereas for RTTOUT only
10% of the components are below 15 ms. In fact, 50% of the
RTTOUT components have a mean RTT between 100 and 400
ms. Because of the propagation delay, we expect most of the
hosts represented by RTTOUT to be located overseas and the
majority of RTTIN hosts to be in Japan.

B. Geolocation

Figure 5 illustrates the graph obtained with the RTTOUT
of the last 10 days of our dataset. For clarity, only edges for
consecutive days are shown (i.e. ∆ = 1). As explained in
Section III-C, strongly connected nodes represent several RTT
distributions for similar hosts. Using the Louvain community
mining algorithm [11], we found 6 clusters of strongly con-
nected nodes denoted C0, ..., C5 in Figure 5. The relevance

Fig. 5. Graph generated with RTTOUT from 2014/03/21 to 2014/03/31. Only
edges connecting consecutive days are displayed. Plain edges mean T d,d

′

i,j ≥
0.075, dashed edges are 0.075 > T d,d

′

i,j ≥ 0.025, and dotted edges are

0.025 > T d,d
′

i,j .

JP KR US CA EU CN RTT
C0 98% 19 ms
C1 97% 44 ms
C2 91% 108 ms
C3 73% 11% 149 ms
C4 87% 4% 175 ms
C5 8% 73% 3% 289 ms

TABLE I
HOSTS GEOLOCATION BREAKDOWN FOR THE CLUSTERS OF NODES

IDENTIFIED IN FIGURE 5.

of these clusters is evaluated using Maxmind’s geolocation
database, GeoIP City [6]. For each cluster we retrieve a
set of representative IP addresses, that is, all IP addresses
that appear at least three times in the traces, and verify the
corresponding country code with the geolocation database.
Table I enumerates each cluster with the corresponding country
codes that accounts for more than 3%, and the mean modeled
RTT (denoted RTT ) that is the average 10µ value for all nodes
in the cluster weighted by the number of IP addresses they
represent. For presentation purposes all European countries
are grouped together under the EU country code.

The two clusters with a RTT under 50 ms, C0 and C1,
stand exclusively for end-points respectively in Japan and
Korea. A few IP addresses in C0 or C1 are classified as US or
EU by the geolocation database, however, the RTTs of these IP
addresses evoke that they are actually located near the MAWI
measurement point in Japan. Further inspections revealed that
these IP addresses are assigned to U.S. or European ASes but
provide services in Japan. This observation emphasizes the
benefits of the proposed empirical approach as opposed to an
AS-based approach.

The three clusters C2, C3 and C4 are primarily composed
of IP addresses located in U.S. but feature different RTTs. With
RTT equals to 108 ms, C2 stands mainly for hosts located on
the West Coast of the U.S., whereas, C4 stands principally for
the East Coast (RTT = 175 ms). C3 is fluctuating between
C2 and C4, it captures various American IP addresses and
several Chinese addresses.
C5 is the cluster with highest delays, RTT = 289 ms, it
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Fig. 7. Graph generated with traffic captured during the week of the Tohoku
earthquake (2011/03/07-2011/03/14).

stands mainly for European hosts. Figure 5 shows, however,
that the cluster is composed of two typical RTT distributions,
one below and one above 300 ms. This bimodal distribution
can be systematically identified with the proposed model and
a min-cut algorithm, thus, it could be decomposed into smaller
clusters to provide more detailed analysis.

We have also inspected the results obtained with RTTIN
and the same 10 days, the Louvain algorithm again identified
6 clusters but all are classified entirely in Japan by the
geolocation database. Yet the model highlights 5 characteristic
clusters with RTT ranging from 0.5 to 13 ms and an outlier
cluster with RTT equals to 123 ms. From RTT , we infer the
location of the corresponding hosts; clusters with RTT < 1
ms are located in the same building as the MAWI measurement
point, 1 ≤ RTT < 10 ms in the same urban area as MAWI
measurement point, and RTT > 10 ms represents hosts
located in other Japanese cities.

Analysis of RTTIN through the whole dataset highlights
clusters whose RTT is around 500 ms, these clusters represent
Indonesian hosts that were connected to the WIDE network
using a satellite link (see Figure 4b, 10µ = 102.7). Therefore,
we emphasize the benefits of the proposed model as this type
of cluster is easily identifiable in our experiments, but, biases
simple median-based analysis.

C. Graph Dynamics

Since RTT changes on the Internet are of prime impor-
tance, we have implemented an application based on the pro-
posed model to identify significant RTT variations in MAWI.
Namely, we compute a daily score for each cluster, called the
RTT fluctuation, which is the difference between the RTT
of two consecutive days normalized by the standard deviation
of RTT from the entire cluster. Consequently, stable RTTs
exhibit RTT fluctuations close to zero, whereas, significant
RTT variations of a cluster are represented by higher values.

Understanding the root causes of these RTT changes is
a difficult task because it can be the results of disturbances
that appear on distance network where no measurements are
available. Since previous studies [33] have reported that BGP
routing changes usually affect the RTT values of Internet hosts,
we investigate the relationships between BGP updates and the
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Fig. 8. Comparison of the ratio of IP addresses affected by a BGP route
change with the absolute values of the typical RTT fluctuations captured by
the proposed model.

RTT fluctuations of each cluster identified with the proposed
model.

We retrieved the BGP Route Information Base (RIB) of the
WIDE network from the RouteViews Project [5] in order to
seek for every BGP route changes that happened between two
consecutive MAWI traces. Using the IP prefix specified by the
BGP updates, we can accurately count the number of IPs in our
dataset that are affected by BGP route changes. Consequently,
for each cluster we compute its daily RTT fluctuations and
compute the ratio of IP addresses in this cluster that are
affected by a BGP route change. Figure 8 depicts for each
day and each cluster the absolute RTT fluctuation and ratio
of IP affected by a BGP update for all RTT measures from
the 1st of the January to the 31st of March 2014. Thereby we
found that 66% of the BGP updates that affects at least 15%
of the cluster IPs exhibit an absolute RTT fluctuation higher
than 0.15. These results are similar to the ones reported in [33],
namely, 72% of the BGP route changes affect Internet hosts
RTTs. However, Figure 8 also highlights that a large fraction
of the RTT fluctuations captured by the proposed method are
not due to BGP updates.

As discussed in [33], intra-AS route changes (e.g. OSPF
route changes) are also a potential source of RTT alterations.
Quantifying the impact of these route changes, however, is
impractical as it would require access to internal routing in-
formation of numerous ASes. Nonetheless, manual inspection
of RTT measurements with the proposed model allows us to
discover evidences of these intra-AS route changes.

For example, the RTT fluctuations for the (red) clus-
ter around 10 ms of Figure 6 are usually close to zero,
nonetheless, two abnormally high values drawn our attention
to January and March 2010. Indeed RTT for this cluster is
especially constant over time, but, on the the 27th of January
it dropped by 1.5 ms and stayed stable until the 25th of
March where it came back to its original value. This behavior
has been identified for different clusters throughout the whole
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Fig. 9. Comparison of MAWI throughput with the absolute values of the
typical RTT fluctuations captured by the proposed model.

dataset, and is very similar to the ones observed during route
changes [33]. Finding these route changes without intra-AS
routing information is particularly difficult [33], nonetheless,
the proposed method enables new alternatives to tackle this
task using IP traffic.

Another obvious source of RTT alterations on the Internet
is network congestion. Indeed, RTTs are directly impacted by
the routers queuing delay or packet drop. Since systematically
evaluating the impact of congestion with router load mea-
surements from numerous ASes is impractical, we propose an
indirect study based on the relationships between the average
throughput of the MAWI traces and the clusters daily RTT
fluctuations. Intuitively, voluminous MAWI traces (i.e. high
bit-rate) have been captured when congestion happened near
the MAWI measurement point or elsewhere. Figure 9 depicts
the relationships between the average throughput of the MAWI
traces and the clusters daily RTT fluctuations for all RTT
measurements collected from January to March 2014. Overall,
significantly higher RTT fluctuations are observed when the
average throughput is higher than 500 Mbps, meaning that the
proposed model effectively captures the RTT increases due to

bottleneck in the network.
Manually inspecting abnormal RTT fluctuations draws our

attention to a different case of network congestion which was
observed after the Tohoku earthquake and tsunami disaster
from the 11th of March, 2011. Three clusters representing
hosts in the U.S. and Europe (similar to C2, C3, C4, and
C5 in Figure 5 and Table I) synchronously exhibit an RTT
increase on the 12th of March which is the first MAWI trace
following the disaster. Apart from edge networks located at the
northern east part of Japan, the Internet infrastructure has been
impressively resilient to the earthquake and tsunami. Related
studies [13], [17] highlighted that the redundant and over-
provisioned backbone network policy in Japan could limit the
disaster impact on the total traffic, and the impact on BGP
was insignificant. Using the WIDE BGP route information
from RouteViews [5], we found that in our dataset between
the 11th and the 12th of March no Japanese IP is affected
by route changes and less than 4% of the hosts in the U.S.
experienced a BGP update. Nevertheless, since the proposed
model identified an RTT increase close to 20 ms for all hosts
outside Japan, but, no change for Japanese hosts, we infer that
the cause of this increase comes from congested routers, or an
intradomain route change, of the transit network to the U.S.

D. Anomalous Host Detection
The proposed model identifies Internet hosts with similar

RTTs and captures their average RTT fluctuations. The causes
of these global fluctuations are mainly due to events happen-
ing at the Internet core infrastructure, thus, simultaneously
affecting numerous Internet hosts. Characterizing the typical
behavior of sets of hosts also permits to identify Internet
hosts that deviate from their usual behavior. For example,
confronting the RTT values of an IP address with the proposed
model allows us to verify if the RTT fluctuations of this
address are consistent with the fluctuations of the thousands IP
addresses monitored to build the model. In our experiments we
verify if the behavior of a monitored IP address is consistent
with the behavior of the cluster it belong to with the following
consistency check.

1) Consistency Check: We verify if a certain host is con-
sistent with a cluster of nodes (identified with the Louvain
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(b) Amazon host experiencing suspicious RTT peak
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(c) RTT fluctuation during the Tohoku earthquake
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(d) Suspicious RTT fluctuations identified with the consistency check

Fig. 10. Four examples of consistency checks performed with the proposed model.

algorithm) by matching the host RTT values with the RTT
distribution represented by each node. Let P d,C = (µi, σ

2
i ),

i ∈ [1,m] be the parameters of the m distributions of the
clusters C, on day d, and Xd the RTT value for the given
host on the same day. Using the probability density function
of the distributions, the consistency score, Cd, is defined as the
maximum probability to match one of the cluster distributions:

Cd =
maxi(f(Xd;P d,Ci ))∑

j

f(Xd;P d,Aj )

where P d,A = (µj , σ
2
j ), j ∈ [1, n] (with m ≤ n) are all the

distributions of all clusters on day d. Therefore, consistency
scores close to 1 represent RTT values in accordance with
the cluster behavior while low consistency scores highlight
contradictory RTT values.

In order to systematically identify deviation of hosts from
their cluster behavior, we report as anomalous any consistency
score Cd where Cd < mean(C)− 3 std(C).

2) Examples: To illustrate the benefits of the consistency
check, Figure 10 depicts the RTT values of four hosts along
with their consistency score. For example, Figure 10a shows
the RTT measures for a TLD DNS server in February and
March 2014. This host features particularly stable RTTs thus
its consistency is also stable over time. However, on the
25th of February, a sudden RTT increase led to a drop of
the consistency score which is flagged as anomalous. Further
inspections revealed that the AS path for this DNS server
changed on the same day, and the only other IP affected by
the BGP update is also flagged as anomalous on that day.

Figure 10b shows another example of anomalous consistency
score, but this time for an host from an Amazon network.
As there is no BGP update happening on that day for this
prefix, and this is the only anomalous IP we found on this
network, the low consistency score in this case highlights local
issues that affect only this host (e.g. overloaded node, Internet
connectivity issues, denial-of-service). These two examples
illustrate the efficiency of our consistency check to asses the
normal behavior of a host and identify suspicious behaviors.
Nonetheless, both cases could be easily identified by analyzing
only the RTT raw values as both RTT peaks are rather obvious.

We now present two examples where the proposed model
and consistency check surpass a simple raw-RTT-based anal-
ysis. The first example comes from data collected during the
Tohoku earthquake in March 2011. Figure 10c depicts the
typical RTT time evolution observed during the earthquake and
the corresponding consistency score. Despite the significant
RTT increase measured right after the earthquake, no anomaly
is reported by the proposed consistency check. As explained in
the previous section, this RTT increase is common to all hosts
outside of Japan. Since the model captured this as the typical
behavior, and this host behaves accordingly, our consistency
check flags no anomaly. Therefore, looking at both the dynam-
ics of the clusters (see Section IV-C) and the consistency of
this host, allows us to infer that the earthquake significantly
affected numerous hosts RTT but the host of Figure 10c is
not behaving differently. In this case, analyzing only the raw-
RTT-values is particularly difficult, either this RTT increase
would be reported as anomalous, or one would conduct a
computationally expensive comparison between these values



and the millions other RTT values from other hosts to find
this global trend in the dataset. Thereby, the proposed model
is an efficient way to carry out numerous comparisons with
any given RTT values at lower computational cost.

The last example is the RTT values of an host in the U.S.
where the third highest RTT value has been solely reported
as anomalous. As shown in Figure 10d the highest RTT
value for this host is caused by a BGP update. This path
update has affected numerous hosts, hence, this is captured
by the model as a typical behavior and is not reported as
anomalous. However, the RTT increase of the 2nd of February
is reported as anomalous because most of the other hosts
behave differently on that day. Without the proposed model,
the analysis of this complex situation would be laborious and
a potential source of false positive alarms.

V. RELATED WORK

Internet delays and RTTs have received a lot of attention
from the networking research community. Various RTT esti-
mation algorithms have been proposed to accurately measure
RTTs, including, end-hosts measurements techniques [22],
RTT estimation from network link passive measurements [21],
[35], and hop-by-hop estimations using IP timestamp option
[27] or ICMP timestamp [8].

Researchers have also carried out numerous efforts to col-
lect Internet delay measurements; For example, the CAIDA’s
Skitter and Archipelago (Ark) projects [4], [2], the AMP
project [1], or PingER [3]. These projects rely mainly on large
probe deployments to collect delay measurements from diverse
geographical locations.

These various RTT measurement techniques have enabled
the design of diverse applications. For example various appli-
cations identify the geolocation of an IP address using RTT
measurements [15], [23], [18], [25]. In cyber security, metrics
measuring the impact of DoS attacks are usually taking into
account RTT values [24] or similar delay measurements [28].

Similar to the evaluation conducted in our work, several
works inspect the relationships between route changes and
RTT fluctuations. These works usually rely on RTT active
measurements and compare RTT variations with intra and inter
domain routing changes [30] or BGP updates [36], [33].

To the best of our knowledge, RTT measurements models
have been rarely proposed in the past. Zhang et al. proposed,
DS2 [37], a tool analyzing numerous end-to-end delay mea-
surements obtained with the King tool [19], and summarizing
these measurements to estimate delay between arbitrary end
hosts. DS2 is a valuable help for designers of large-scale
distributed systems that are relying on overlay networks. This
approach is orthogonal to the model proposed in this paper,
as DS2 disregards the time evolution of Internet delays.

The model proposed in this paper supplements the vast RTT
literature, by simultaneously analyzing delay measurements
from numerous hosts and characterizing their time evolution.

VI. DISCUSSION

Our results support the benefits of the proposed model to
monitor and investigate spatial and temporal RTT dynamics.

In fact, by dissecting the RTT distributions, the proposed
model gives great insights into the typical delays experienced
by a large population of IP addresses. The identification of
hosts deviating from typical behaviors uncovered by the model
further emphasizes the advantages of the proposed model and
its benefits over raw RTT analysis.

Since the proposed model is designed for low memory usage
and computational complexity, we successfully conducted all
our experiments on a commodity computer. Moreover, as the
model follows a statistical approach, it is inherently suitable
to sampled traffic.

In this article we presented results using fixed parameters
values for the mixture model, however, further experiments
revealed that the resolution of the model can increase with
more sensitive settings. Overall, we found that the quality of
RTT, hence, the model accuracy, decreases with respect to the
distance between the measurement point and the monitored
hosts. The noise added at each hop indeed makes RTT
measures inaccurate, therefore, in our experiments hosts from
France and U.K. are not distinguishable, whereas we observed
clusters of hosts located in different Japanese cities.

The empirical approach presented in this article has the
advantage of monitoring RTTs as it is experienced by Internet
users, unlike active measurements that could be mislead by
load balancing [29]. Nevertheless, the proposed model is not
limited to passive measurements, it is also suitable for active
measurements analysis.

As emphasized in Section IV detecting route change is
an intuitive application of the proposed model. Nonetheless,
this model was originally designed to detect hosts with a
sudden RTT increase due to DoS attacks [24]. As shown with
the consistency check results of Fig.10, modeling common
RTT variations allows us to build reference data, and reports
hosts deviating from this common behavior. Interestingly,
this approach to detect DoS (still under development) allows
one to detect hosts under attack from a distant monitored
network where no malicious traffic may be observed. Using the
proposed model, we can accurately identify the side effects of
the attack by taking into account the various events happening
on the network (e.g. route changes, or congestion) that can
affect the RTT measurements.

The application domain of the proposed model is, how-
ever, not limited to these examples. In principle, any work
involving numerous measurements of end-points delays could
take advantage of this model. The model leverages large-scale
measurements analysis by computing a coarse grained view
of the RTTs dynamics, thus, avoiding the burden of enormous
datasets. Therefore, the proposed model has potential benefits
in various research domains including overlay networks [37],
server selection [32], routing [30], [36], [33], geolocation [18],
security [24] and Internet outage detection [31].

From our experience we found that results from applications
based on the proposed model are, however, particularly diffi-
cult to evaluate. Since RTTs are the sum of various networks
delays, applications may identify events appearing outside
of the monitored network. Due to the lack of data source



for certain networks (e.g. OSPF messages, and routers load),
carrying out comprehensive evaluations for these applications
presents real challenges.

VII. CONCLUSIONS

Delays on the Internet are of prime importance for various
time-sensitive applications. This article proposed an empirical
model to uncover and monitor the typical RTTs of a large
population of connected hosts. The result of the model consists
in a graph summarizing the time evolution of the uncovered
typical RTTs. Consequently, we analyzed RTTs to millions of
IP addresses using the proposed model and basic graph theory
techniques. The model is evaluated with external datasets,
such as geolocation database and BGP route information. We
also presented results where the model captured important
RTT fluctuations caused by route changes or congestion, and
introduced an application to detect hosts exhibiting anomalous
RTT values.
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