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ABSTRACT
A typical large building contains thousands of sensors, mon-
itoring the HVAC system, lighting, and other operational
sub-systems. With the increased push for operational ef-
ficiency, operators are relying more on historical data pro-
cessing to uncover opportunities for energy-savings. How-
ever, they are overwhelmed with the deluge of data and seek
more efficient ways to identify potential problems. In this
paper, we present a new approach called the Strip, Bind and
Search (SBS); a method for uncovering abnormal equipment
behavior and in-concert usage patterns. SBS uncovers rela-
tionships between devices and constructs a model for their
usage pattern relative to other devices. It then flags devia-
tions from the model. We run SBS on a set of building sen-
sor traces; each containing hundred sensors reporting data
flows over 18 weeks from two separate buildings with fun-
damentally different infrastructures. We demonstrate that,
in many cases, SBS uncovers misbehavior corresponding to
inefficient device usage that leads to energy waste. The av-
erage waste uncovered is as high as 2500 kWh per device.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
Buildings are one of the prime targets to reduce energy

consumption around the world. In the United States, the
second largest energy consumer in the world, buildings ac-
count for 41% of the country’s total energy consumption
[26]. The first measure towards reducing the building’s en-
ergy consumption is to prevent electricity waste due to the
improper use of the buildings equipment.
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Large building infrastructure is usually monitored by nu-
merous sensors. Some of these sensors enable building ad-
ministrators to view device power-draw in real time. This
allows administrators to determine proper device behavior
and system-wide inefficiencies. Detecting misbehaving de-
vices is crucial, as many are sources of energy waste. How-
ever, identifying these saving opportunities is impractical for
administrators because large buildings usually contain hun-
dreds of monitored devices producing thousands of streams
and it requires continuous monitoring. As such, the goal
of this work is to establish a method that automatically re-
ports abnormal device-usage patterns to the administrator
by closely examining all of the continuous power streams.

The intuition behind the proposed approach is that each
service provided by the building requires a minimum subset
of devices. The devices within a subset are used at the same
time when the corresponding service is needed and a savings
opportunity is characterized by the partial activation of the
devices. For example, office comfort is attained through suf-
ficient lighting, ventilation, and air conditioning. These are
controlled by the lighting and HVAC (Heating, Ventilation,
and Air Conditioning) system. Thus, when the room is oc-
cupied both the air conditioner (heater on a cold day) and
lights are used together and should be turned off when the
room is empty. In principal, if a person leaves the room and
turns off only the lights then the air conditioner (or heater)
is a source of electricity waste.

Following this basic idea we propose Strip, Bind and Search
(SBS), an unsupervised methodology that systematically de-
tects electricity waste. Our proposal consists of two key
components:

Strip and Bind The first part of the proposed method
mines the raw sensor data, identifying inter-device us-
age patterns. We first strip the underlying traces of
occupancy-induced trends. Then we bind devices whose
underlying behavior is highly correlated. This allows
us to differentiate between devices that are used to-
gether (high correlation), used independently (no cor-
relation), and used mutually exclusively (negative cor-
relation).

Search The second part of the method monitors devices re-
lationships over time and reports deviations from the
norm. It learns the normal inter-device usage using a
robust, longitudinal analysis of the building data and
detect anomalous usages. Such abnormalities usually
present an opportunity to reduce electricity waste or
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events that deserve careful attention (e.g. faulty de-
vice).

SBS overcomes several challenges. First, noisy sensor
traces that all share a similar trend, making direct corre-
lation analysis non-trivial. Device energy consumption is
mainly driven by occupancy and weather, all the devices
display a similar daily pattern, in roughly overlapping time
intervals and phases. Therefore, one of the main contribu-
tions of this work is uncovering the intrinsic device relation-
ships by filtering out the dominant trend. For this task we
use Empirical Mode Decomposition [14], a known method
for de-trending time-varying signals.

Another key contribution of this work is in using SBS
to practically monitor building energy consumption. More-
over, the proposed method is easy to use and functions in
any building, as it does not require prior knowledge of the
building nor extra sensors. It is also tuned through a single
intuitive parameter.

We validate the effectiveness of our approach using 10
weeks of data from a modern Japanese building containing
135 sensors and 8 weeks of data from an older American
building containing 70 sensors. These experiments highlight
the effectiveness of SBS to uncover device relationships in a
large deployment of 135 sensors. Furthermore, we inspect
the SBS results and show that the reported alarms corre-
spond to significant opportunities to save energy. The ma-
jor anomaly reported in the American building lasts 18 days
and accounts for a waste of 2500 kWh. SBS also reports nu-
merous small anomalies, hidden deep within the building’s
overall consumption data. Such errors are very difficult to
find without SBS.

In the rest of this paper, we detail the mechanisms of SBS
(Section 3) before evaluating it with real data (Section 5)
then we discuss different outcomes of the proposed method-
ology (Section 7) and conclude.

2. PROBLEM DESCRIPTION
The primary objective of SBS is to determine how de-

vice usage patterns are correlated across all pairs of sensors
and discover when these relationships change. The naive
approach is to run correlation analysis on pairs of sensor
traces, recording their correlation coefficients over time and
examining when there is a statistically-significant deviation
from the norm. However, this approach does not yield any
useful information when applied to raw data traces. For ex-
ample, the two raw signals shown in Figure 3 are from two
independent HVAC systems, serving different rooms on dif-
ferent floors. Since each space is independently controlled,
we expect their power-draw signals to be uncorrelated (or
at least distinguishable from other signal pairs). However,
their correlation coefficient (0.57), is not particularly infor-
mative – it is statistically similar to the correlation between
itself and other signals in the trace.

Using a larger set of devices, Figure 1 shows a correla-
tion matrix with 135 distinct lighting and HVAC systems
serving numerous rooms in a building (described later on in
Section 4.1). The indices are selected such that their index-
difference is indicative of their relative spatial proximity. For
example, a device in location 1 is closer in the building to a
device in location 2 than it is to a device in location 135. The
color of the cell is the average pairwise correlation coefficient
for devices in the row-column index. The higher the value,
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Figure 1: Correlation coefficients of the raw traces
from the Building 1 dataset (Section 4.1). The
matrix is ordered such as the devices serving
same/adjacent rooms are nearby in the matrix.
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Figure 2: Auto-correlation of a usual signal from
the Building 1 dataset. The signal features daily
and weekly patterns (resp. x = 24 and x = 168).

the lighter the color. Devices serving the same room are
along the diagonal. Because these devices are used simul-
taneously, we expect high average correlation scores, lighter
shades, along the diagonal figure. However, we observe no
such pattern. Most of the signals are correlated with all the
others and we see no discernible structure.

An explanation for this is that the daily occupant us-
age patterns drive these results. Figure 3 demonstrates this
more clearly. It shows two 1-week raw signals traces which
feature the same diurnal pattern. This trend is present in
almost every sensor trace, and, it hides the smaller fluctua-
tions providing more specific patterns driven by local occu-
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pant activity. Upon deeper inspection, we uncovered several
dominant patterns, common among energy-consuming de-
vices in buildings [27]. Figure 2 depicts the auto-correlation
of a usual electric power signal for a device. The two highest
values in the figure correspond to a lag of 24 hours and 168
hours (one week). Therefore, the signal has some periodicity
and similar (though not equal) values are seen at daily and
weekly time scales. The daily pattern is due to daily office
hours and the weekly pattern corresponds to weekdays and
weekends. Correlation analysis on raw signals cannot be
used to determine meaningful inter-device relationships be-
cause periodic components act as non-stationary trends for
high-frequency phenomenon, making the correlation func-
tion irrelevant. Such trends must be removed in order to
make meaningful progress towards our aforementioned goals.

In the next section we describe SBS. We discuss strip
and bind in section 3.1, which addresses de-trending and
relationship-discovery. Then, we describe how we search for
changes in usage patterns, in section 3.2, to identify poten-
tial savings opportunities.

3. METHODOLOGY

3.1 Strip and Bind
Discovering devices that are used in concert is non-trivial.

SBS decomposes each signal into an additive set of compo-
nents, called Intrinsic Mode Functions (IMF), that reveals
the signal patterns at different frequency bands. IMFs are
obtained using Empirical Mode Decomposition (see Figure 3
and Section 3.1.1). We only consider IMFs with time scales
shorter than a day, since we are interested in capturing
short-scale usage patterns. Consequently, SBS aggregates
the IMFs that fall into this specific time scale (see IMF agg.
in Figure 3). The resulting partial signals of different device
power traces are compared, pairwise, to identify the devices
that show un/correlated usage patterns (see Corr. Coeff. in
Figure 3).

3.1.1 Empirical Mode Decomposition
Empirical Mode Decomposition (EMD) [14] is a technique

that decomposes a signal and reveals intrinsic patterns, trends,
and noise. This technique has been widely applied to a va-
riety of datasets, including climate variables [20], medical
data [4], speech signals [12, 11], and image processing [21].
EMD’s effectiveness relies on its empirical, adaptive and in-
tuitive approach. In fact, this technique is designed to ef-
ficiently decompose both non-stationary and non-linear sig-
nals without requiring any a priori basis functions or tuning.

EMD decomposes a signal into a set of oscillatory com-
ponents called intrinsic mode functions (IMFs). An IMF
satisfies two conditions: (1) it contains the same number of
extrema and zero crossings (or differ at most by one); (2)
the two IMF envelopes defined by its local maxima and local
minima are symmetric with respect to zero. Consequently,
IMFs are functions that directly convey the amplitude and
frequency modulations.

EMD is an iterative algorithm that extracts IMFs step
by step by using the so-called sifting process [14]; each step
seeks for the IMF with the highest frequency by sifting, then
the computed IMF is removed from the data and the residual
data are used as input for the next step. The process stops
when the residual data becomes a monotonic function from
which no more IMF can be extracted.

EMD
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Figure 3: Strip and Bind using two raw signals
standing for one week of data from two different
HVACs. (1) Decomposition of the signals in IMFs
using EMD (top to bottom: c1 to cn); (2) aggrega-
tion of the IMFs based on their time scale; (3) com-
parison of the partial signals (aggregated IMFs) us-
ing correlation coefficient.

We formally describe the EMD algorithm as follows:

1. Sifting process: For a current signal h0 = X, let m0

be the mean of its upper and lower envelopes as deter-
mined from a cubic-spline interpolation of local max-
ima and minima.

2. The estimated local mean m0 is removed from the sig-
nal, giving a first component: h1 = h0 −m0

3. The sifting process is iterated, h1 taking the place of
h0. Using its upper and lower envelopes, a new local
mean m1 is computed and h2 = h1 −m1.

4. The procedure is repeated k times until hk = hk−1 −
mk−1 is an IMF according to the two conditions above.

5. This first IMF is designated as c1 = hk, and contains
the component with shortest periods. We extract it
from the signal to produce a residual: r1 = X − c1.
Steps 1 to 4 are repeated on the residual signal r1,
providing IMFs cj and residuals rj = rj−1 − cj , for j
from 1 to n.

6. The process stops when residual rn contains no more
than 3 extrema.
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The result of EMD is a set of IMFs ci and the final residue
rn, such as:

X =

n∑
i=1

ci + rn

where the size of the resulting set of IMFs (n) depends on
the original signal X and rn represents the trend of the data
(see IMFs in Figure 3).

For this work we implemented a variant of EMD called
Complete Ensemble EMD [25]. This algorithm computes
EMD several times with additional noise, it allows us to
efficiently analyze signals that have flat sections (i.e. con-
suming no electricity in our case).

3.1.2 IMF aggregation
By applying EMD to energy consumption signals we ob-

tain a set of IMFs that precisely describe the devices con-
sumption patterns at different frequency bands. Therefore,
we can focus our analysis on the smaller time scales, ignor-
ing the dominant patterns that prevent us from effectively
analyzing raw signals.

However, comparing the IMFs obtained from different sig-
nals is also not trivial, because EMD is empirically uncover-
ing IMFs from the data there is no guarantee that the two
IMFs c1i and c2i obtained from two distinct signals S1 and
S2 represent data at the same frequency domain. Directly
comparing c1i and c2i is meaningless unless we confirm that
they belong to the same frequency domain.

There are numerous techniques to retrieve IMF frequen-
cies [15]. In this work we take advantage of the Generalized
Zero Crossing (GZC) [13] because it is a simple and robust
estimator of the instantaneous IMF frequency [15]. GZC is a
direct estimation of IMF instantaneous frequency using crit-
ical points defined as the zero crossings and local extrema
(round dots in Figure 4). Formally, given a data point p,
GZC measures the quarter (T4), the two halves (T x

2 ), and
the four full periods (T y

1 ), p belong to (see Figure 4) and the
instantaneous period is computed as:

T =
1

7
{4T4 + (2T 1

2 + 2T 2
2 ) + (T 1

1 + T 2
1 + T 3

1 + T 4
1 )}

Since all points p between two critical points have the
same instantaneous period GZC is local down to a quarter
period. Hereafter, we refer to the time scale of an IMF as the
average of the instantaneous periods along the whole IMF.
Because the time scale of each IMF depends on the original
signal, we propose the following to efficiently compare IMFs
from different signals. We cluster IMFs with respect to their
time scales and partially reconstruct each signal by aggre-
gating its IMFs from the same cluster. Then, we directly
compare the partial signals of different devices.

The IMFs are clustered using four time scale ranges:

• The high frequencies are all the IMFs with a time scale
lower than 20 minutes. These IMFs capture the noise.

• The medium frequencies are all the IMFs with a time
scale between 20 minutes and 6 hours. These IMFs
convey the detailed devices usage.

• The low frequencies are all the IMFs with a time scale
between 6 hours and 6 days. These IMFs represent
daily device patterns.

0

Figure 4: Generalized Zero Crossing: the local mean
period at the point p is computed from one quarter
period T4, two half periods T x

2 and four full periods
T y
1 (where x = 1, 2, and, y = 1, 2, 3, 4).

• The residual data is all data with a time scale higher
than 6 days. This is mainly residual data obtained af-
ter applying EMD. Also, it highlights the main device
trend.

These time scale ranges are chosen based on our experi-
ments and goal. The 20-minute boundary relies on the sam-
pling period of our dataset (5 minutes) and permits us to
capture IMFs with really short periods. The 6-hour bound-
ary allows us to analyze all patterns that have a period
shorter than the usual office hours. The 6-day boundary
allows us to capture daily patterns and weekday patterns.

Aggregating IMFs, within each time scale range, results
in 4 partial signals representing different characteristics of
the device’s energy consumption (see Partial Signals in Fig-
ure 3). We do a pairwise device trace comparison, calculat-
ing the correlation coefficient of their partial signals. In the
example shown in Figure 3, the correlation coefficient of the
raw signals suggests that they are highly correlated (0.57).
However, the comparison of the corresponding partial sig-
nals provides new insights; the two devices are poorly cor-
related at high and medium frequencies (respectively −0.01
and −0.04) but highly correlated at low frequencies (0.79)
meaning that these devices are not “intrinsically” correlated.
They only share a similar daily pattern.

All the devices are compared pairwise at the four differ-
ent time scale ranges. Consequently, we obtain four corre-
lation matrices that convey device similarities at different
time scales. Each line of these matrices (or column, since
the matrices are symmetric) reveals the behavior of a device
– its relationships with the other devices at a particular time
scale. The matrices form the basis for tracking the behavior
of devices and to search for misbehavior.

3.2 Search
Search aims at identifying misbehaving devices in an un-

supervised manner. Device behavior is monitored via the
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correlation matrices presented in the previous section. Us-
ing numerous observations SBS computes a specific reference
that exhibits the normal inter-device usage pattern. Then,
SBS compares the computed reference with the current data
and reports devices that deviate from their usual behavior.

3.2.1 Reference
We define four reference matrices, which capture normal

device behavior at the four time scale ranges defined in Sec-
tion 3.1.2. The references are computed as follows: (1) we
retrieve the correlation matrices for n consecutive time bins.
(2) For each pair of devices we compute the median correla-
tion over the n time bins and obtain a matrix of the median
device correlations.

Formally, for each time scale range the computed reference
matrix for d devices and n time bins is:

Ri,j = median(C1
i,j , ..., C

n
i,j)

where i and j ranges in [1, d].
Because anomalies are rare by definition, we assume the

data used to construct the reference matrix is an accurate
sample of the population; it is unbiased and accurately cap-
tures the range of normal behavior. Abnormal correlation
values, that could appear during model construction, are
ignored by the median operator thanks to its robustness to
outlier (50% breakdown point). However, if that assumption
does not hold (more than 50% of the data is anomalous), our
model will flag the opposite – labeling abnormal as normal
and vice-versa. From close inspection of our data, we believe
our primary assumption is sound.

3.2.2 Behavior change
We compare each device behavior, for all time bins, to

the one provided by the reference matrix. Consider the cor-
relation matrix Ct obtained from the data for time bin t
(1 ≤ t ≤ n). Vector Ct

i,∗ is the behavior of the ith device
for this time bin. Its normal behavior is given by the corre-
sponding vector in the reference matrix Ri,∗. We measure
the device behavior change at the time bin t with the fol-
lowing Minkowski weighted distance:

lti =

(
d∑

j=1

wij

(
Ct

i,j −Ri,j

)p)1/p

where d is the number of devices and wij is:

wij =
Ri,j∑d

k=1Ri,k

.

The weight w enables us to highlight the relationship changes
between the device i and those highly correlated to it in the
reference matrix. In other words, our definition of behavior
change is mainly driven by the relationship among devices
that are usually used in concert. We also set p = 4 in or-
der to inhibit small differences between Ct

i,j and Ri,j but
emphasize the important ones.

By monitoring this quantity over several time bins the
abnormal device behaviors are easily identified as the out-
lier values. In order to identify these outlier values we im-
plement a robust detector based on median absolute de-
viation (MAD), a dispersion measure commonly used in
anomaly detection [16, 7]. It is a measure that robustly es-
timates the variability of the data by computing the median
of the absolute deviations from the median of the data. Let

li = [l1i , ..., l
n
i ] be a vector representing the behavior changes

of device i over n time bins, then its MAD value is defined
as:

MADi = bmedian(|li −median(li)|)

where the constant b is usually set to 1.4826 for consistency
with the usual parameter σ for Gaussian distributions. Con-
sequently, we define anomalous behavior, for device i at time
t, such that the following equation is satisfied:

lti > median(li) + τ MADi

Note, τ is a parameter that permits to make SBS more or
less sensitive.

The final output of SBS is a list of alarms in the form (t, i)
meaning that the device i has abnormal behavior at the time
bin t. The priority of the alarms in this list is selected by
the building administrator by tuning the parameter τ .

4. DATA SETS
We evaluate SBS using data collected from buildings in

two different geographic locations. One is a new building on
main campus of the University of Tokyo and the other is an
older building at the University of California, Berkeley.

4.1 Engineering Building 2 - Todai
Engineering building 2, at the University of Tokyo (To-

dai), is a 12-story building completed in 2005 and is now
hosting classrooms, laboratories, offices and server rooms.
The electricity consumption of the lighting and HVAC sys-
tems of 231 rooms is monitored by 135 sensors. Rather than
a centralized HVAC system, small, local HVAC systems are
set up throughout the buidling. The HVAC systems are
classified into two categories, EHP (Electrical Heat Pump)
and GHP (Gas Heat Pump). The GHPs are the only de-
vices that serve numerous rooms and multiple floors. The 5
GHPs in the dataset serve 154 rooms. The EHP and light-
ing systems serve only pairs of rooms and which are directly
controlled by the occupants. In addition, the sensor meta-
data provides device-type and location information (room
number), therefore, the electricity consumption of each pair
of rooms is separately monitored.

The dataset contains 10 weeks of data starting from June
27, 2011 and ending on September 5, 2011. This period of
time is particularly interesting for two reasons: 1) in this
region, the summer is the most energy-demanding season
and 2) the building manager actively works to curtail energy
usage as much as possible due to the Tohoku earthquake and
Fukushima nuclear accident.

Furthermore, this dataset is a valuable ground truth to
evaluate the Strip and Bind portions of SBS. Since the light
and HVAC of the rooms are directly controlled by the room’s
occupants, we expect SBS to uncover verifiable devices re-
lationships.

4.2 Cory Hall - UC Berkeley
Cory Hall, at UC Berkeley, is a 5-story building hosting

mainly classrooms, meeting rooms, laboratories and a dat-
acenter. This building was completed in 1950, thus its in-
frastructure is significantly different from the Japanese one.
The HVAC system in the building is centralized and serves
several floors per unit. There is a separate unit for an inter-
nal fabricated laboratory, inside the building.
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This dataset consists of 8 weeks of energy consumption
traces measured by 70 sensors starting on April 5th, 2011.
In contrast to the other dataset, a variety of devices are
monitored, including, electric receptacles on certain floors,
most of the HVAC components, power panels and whole-
building consumption.

These two building infrastructures are fundamentally dif-
ferent. This enables us to evaluate the practical efficacy
of the proposed, unsupervised method in two very different
environments.

4.3 Data pre-processing
Data pre-processing is not generally required for the pro-

posed approach. Nevertheless, we observe in a few excep-
tional cases that sensors reporting excessively high values
(i.e. values higher than the device actual capacity) that
greatly alter the performance of SBS by inducing a large
bias in the computation of the correlation coefficient. There-
fore, we remove values that are higher than the maximum
capacity of the devices, from the raw data.

5. EXPERIMENTAL RESULTS
In this section we evaluate SBS on our building traces.

We demonstrate the benefits of striping the data by moni-
toring patterns captured at different time scales. Then, we
thoroughly investigate the alarms reported by SBS.

5.1 Shortcomings
Because our analysis is done on historical data, some of

the faults found by SBS could not be fully corroborated. In
order to fully examine the effectiveness of our approach, we
must run it in real time and physically check that the prob-
lem is actually occurring. When a problem is detected in
the historical trace, months after it has occurred, the cur-
rent state of the building may no longer reflect what is in
the traces. Some of the anomalies discussed in this section
uncover interpretable patterns that are difficult to find in
practice. For example, simultaneous heating and cooling
is a known, recurring problem in buildings, but it is very
hard to identify when it is occurring. Some of the anomalies
we could not interpret might be interpretable by a building
manager, however, we did not consult either building man-
ager for this study. Therefore, the results of this study do
not examine the true/false positive rate exhaustively.

The true/false negative rate is impractical to assess. It
may be examined through synthetic stimulation of the build-
ing via the control system. However, getting cooperation
from a building manager to hand over control of the build-
ing for experimentation in non-trivial. Therefore, we forgo
a full true/false negative analysis in our evaluation.

Because of these challenges, the evaluation of SBS focuses
on comparing the output with known fault signatures. We
examine anomalies, in either building, where the anomaly
is easily interpretable but difficult to find by the building
manager. We forego a comparison of SBS with compet-
ing algorithms because related algorithms require detailed
knowledge of the building, a priori. The advantage of SBS
is that it requires no such information to provide immediate
value.

5.2 Device behavior at different time scales
The Strip and Bind part of SBS is evaluated using the data

from Eng. Bldg 2. This dataset is appropriate to measure

SBS’s performance, since lighting and HVAC systems serv-
ing the same room are usually used simultaneously. Con-
sequently, we analyze this data using SBS and verify that
the higher correlations at medium frequencies correspond to
devices located in the same room.

The dataset is split into 10, one-week bins and each bin is
processed by SBS. Using the 10 correlation matrices at each
time scale range, SBS uncovers the four reference matrices
depicted in Figure 5.

High frequencies.
In this work the high frequencies correspond to the sig-

nals noise, therefore, we do not expect any useful informa-
tion from the corresponding matrix (Figure 5a). Indeed, the
corresponding reference matrix does not provide any help to
determine a device’s relative location. Thus, we emphasize
that high frequency data should be ignored for uncovering
device relationships (in contrast to [10]). Interestingly, we
find that the sensors monitoring the lights generate consis-
tent noise.

Medium frequencies.
Our main focus is on the medium frequencies as it is de-

signed to capture the intrinsic device relationships. Figure
5b shows the correlation matrix at medium frequencies. It
is significantly different from the one obtained with the raw
signals (Figure 1): high correlation coefficients are concen-
trated along the matrix diagonal. Since devices serving the
same or adjacent rooms are placed nearby in the matrix it
validates our hypothesis: high correlation scores within the
medium frequency band shows strong inter-device relation-
ships.

Considering this reference matrix as an adjacency matrix
of a graph, in which the nodes are the devices, we identify
the clusters of correlated devices using a community min-
ing algorithm [5]. As expected we obtain mainly clusters of
only two devices (light and HVAC serving the same room),
but we also find clusters that are composed of more devices.
For example a cluster contains 3 HVAC systems serving the
three server rooms. Although these server rooms are located
on different floors, SBS shows a strong correlation between
these devices. Coincidentally, they are managed similarly.
Interestingly, we also observe a couple of clusters that con-
sist of independent devices serving adjacent rooms belonging
to the same lab. The bigger cluster contains 33 devices that
are 2 GHP devices and the corresponding lights. This cor-
relation matrix and the corresponding clusters highlight the
ability for SBS to identify such hidden inter-device usage
relationships.

Low frequencies.
Low frequencies capture daily patterns, embedded in all

the device traces. Figure 5c depicts the corresponding refer-
ence matrix which is similar to the one of raw signal traces
(Figure 1) and it shows no particular structure.These partial
signals are discarded as they do not help us in identifying
inter-device usage patterns.

Residual data.
The residual data shows the weekly trend, which gives

us no information about device relationships. But, surpris-
ingly, by reordering the correlation matrix based on the type
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Figure 5: Reference matrices for the four time scale ranges (the diagonal x = y is colored in black for better
reading). The medium frequencies highlight devices that are located next to each other thus intrinsically
related. The low frequencies contains the common daily pattern of the data. The residual data permits to
visually identify devices of the similar type.

of the devices (Figure 5d) we can visually identify two ma-
jor clusters. The first cluster consists of HVAC devices (see
EHP and GHP in Figure 5d) and the second one contains
only lights. An in-depth examination of the data reveals
that long-term trends are inherent to the device types. For
example, as the consumption of both the EHP and GHP
devices is driven by the building occupancy and the out-
side temperature, these two types of devices follow the same
trend. However, the use of light is independent from the out-
side temperature thus the lighting systems follow a common
trend different from the EHP and GHP one.

We conduct the same experiments by splitting the dataset

in 70 bins of 1 day long and observe analogous results at high
and medium frequencies but not at lower frequencies. This
is because the bins are too short to exhibit daily oscillations
and the residual data captures only the daily trend.

5.3 Anomalies
We evaluate the search performance of SBS using the

traces from the Eng. Bldg 2 and Cory Hall. Due to the
lack of historical data, such as room schedule or reports of
energy waste, the evaluation is non-trivial. Furthermore,
getting ground truth data from a manual inspection of the
hundreds traces of our data sets is impractical. The lack of
ground truth data prevents us from producing a systematic
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Figure 6: Number of reported alarms for various
threshold value (τ = [3, 10]).

High Low Punc. Missing Other

Eng. Bldg 2 9 (5) 6 (5) 1 (1) 36 (1) 3 (3)
Cory Hall 25 (7) 7 (3) 4 (4) 0 (0) 3 (3)

Table 1: Classification of the alarms reported by
SBS for both dataset (and the number of corre-
sponding anomalies).

analysis of the anomalies missed by SBS (i.e. false negatives
rate). Nevertheless, we exhibit the relevance of the anoma-
lies uncovered by SBS (i.e. high true positive rate and low
false positive rate) by manually checking the output of SBS.

Anomaly classification.
To validate SBS results we manually inspect the anomalies

detected by the algorithm. For each reported alarm (t, i)
we investigate the device trace i and the devices correlated
to it to determine the reason for the alarm. Specifically, we
retrieve the major relationship change that causes the alarm
(i.e. max(|wj(C

t
i,j − Ri,j)|), see Section 3.2) and examine

the metadata associated to the corresponding device. This
investigation allows us to classify the alarms into five groups:

• High power usage: alarms corresponding to electricity
waste.

• Low power usage: alarms representing the abnormally
low electricity consumption of a device.

• Punctual abnormal usage: alarms standing for short
term (less than 2.5 hours) raise or drop of the electric-
ity consumption.

• Missing data: alarms raised due to a sensor failure.

• Other : alarms whose root cause is unclear.

Experimental setup.
For each experiment, the data is split in time bins of one

day, starting from 09:00 a.m. – which is approximately the

office’s opening time. We avoid having bins start at mid-
night since numerous anomalies appear at night and they
are better highlighted if they are not spanning two time
bins. Only the data at medium frequencies are analyzed,
the other frequency bands are ignored, and the reference
matrix is computed from all time bins.

The threshold τ tunes the sensitivity of SBS, hence, the
number of reported alarms. Furthermore, by plotting the
number of alarms against the value of τ for both datasets
(Figure 6) we observe an elbow in the graph around τ = 5.
With thresholds lower than this pivot value (τ < 5), the
number of alarms significantly increases, causing less impor-
tant anomalies to be reported. For higher values (τ > 5), the
number of alarms is slowly decreasing, providing more con-
servative results that consist of the most important anoma-
lies. This pivot value provides a good trade off for either
data set.

Table 1 classifies the alarms reported by SBS on both
datasets. Anomalies spanning several time bins (or involving
several devices) may raise several alarms. We display these
in Table 1 as numbers in brackets – the number of anomalies
corresponding to the reported alarms.

5.3.1 Engineering Building 2
SBS reported 55 alarms over the 10 weeks of the Eng.

Bldg 2 dataset. However, 36 alarms are set aside because
of sensor errors; one GHP has missing data for the first 18
days. Since this device is highly correlated to the GHP in
the reference matrix, their relationship is broken for the 18
first bins and for each bin one alarm per device is raised.

In spite of the post-Fukushima measures to reduce Eng.
Bldg 2’s energy consumption, SBS reported 9 alarms corre-
sponding to high power usage (Table 1). Figure 7a depicts
the electricity consumption of the light and EHP in the same
room where two alarms are raised. Because the EHP was
not used during daytime (but is turned on at night, when the
light is turned off) the relationship between the two devices
is “broken” and an alarm is raised for each device. Figure
7b shows another example of energy waste. The light is on
at night and the EHP is off. The top-priority anomaly re-
ported by SBS is caused by the 10 days long constant use
of an EHP (Figure 7d) and this waste of electricity accounts
for 165 kWh. SBS partially reports this anomaly but lower
values of τ permits us to identify most of it.

We observed 6 alarms corresponding to abnormally low
power use. Upon further inspection we notice that it cor-
responds to energy saving initiatives from the occupants –
likely due to electricity concerns in Japan. This behavior is
displayed in Figure 7c. The room is occupied at the usual
office hours (indicated by light usage) but the EHP is not
on in order to save electricity.

5.3.2 Cory Hall
SBS reported 39 alarms for the Cory Hall dataset (Table

1). 7 are classified as low power usage, however, our inspec-
tion revealed that the root causes are different than for the
Eng. Bldg 2 dataset. We observe that the low power usage
usually corresponds to device failures or misconfiguration.
For example, Figure 8a depicts the electricity consumption
of the 2nd floor chiller and a power riser that comprises the
consumption of multiple systems, including the chiller. As
the chiller suddenly stops working, the correlation between
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both measurements is significantly altered and an alarm for
each device is raised.

SBS also reports 25 alarms corresponding to high power
usage. One of the identified anomalies is particularly inter-
esting. We indirectly observe abnormal usage of a device
from the power consumption of the elevator and a power
panel for equipment from the 1st to the 4th floor. Figure 8b
and 8c show the electricity consumption for both devices.
SBS uncovers the correlation between the these two signals,
as the amount of electricity going through the panel fluctu-
ates along with the elevator power consumption (Figure 8c).
In fact, the elevator is a good indicator of the building’s oc-
cupancy. Anomalous energy-consumption is identified dur-
ing a weekend as the consumption measured at the panel
is independently fluctuating from the elevator usage. These
fluctuations are caused by a device that is not directly mon-
itored. Therefore, we could not identify the root cause more
precisely. Nevertheless, the alarm is worthwhile for building
operators to start investigating.

The most important anomaly identified in Cory Hall is
shown in Figure 8d. This anomaly corresponds to the mal-
functioning of the HVAC heater serving the 4th and 5th

floors. The heater is constantly working for 18 consecutive
days, regardless of the underlying occupant activity. More-
over, in order to maintain appropriate temperature this also
results in an increase of the 4th floor HVAC chiller power
consumption and several fans, such as the one depicted in
Figure 8d. This situation is indicative of simultaneous heat-
ing and cooling – whereby heating and cooling systems are
competing – and it is a well-know problem in building man-
agement that leads to significant energy waste. For this ex-
ample, the electricity waste is estimated around 2500 kWh
for the heater. Nevertheless, as the anomaly spans over 18
days, it is hidden in the building’s overall consumption, thus,
it is difficult to detect by building administrators without
SBS.

6. RELATED WORK
The research community has addressed the detection of

abnormal energy-consumption in buildings in numerous ways
[17, 18].

The rule-based techniques rely on a priori knowledge, they
assert the sustainability of a system by identifying a set
of undesired behaviors. Using a hierarchical set of rules,
Schein et al. propose a method to diagnose HVAC systems
[23]. In comparison, state machine models take advantage of
historical training data and domain knowledge to learn the
states and transitions of a system. The transitions are based
on measured stimuli identified through a domain expertise.
State machines can model the operation of HVAC systems
[22] and permit to predict or detect the abnormal behav-
ior of HVAC’s components [3]. However, the deployment
of these methods require expert knowledge and are mostly
applied to HVAC systems.

In [24], the authors propose a simple unsupervised ap-
proach to monitor the average and peak daily consumption
of a building and uncover outlier, nevertheless, the misbe-
having devices are left unidentified.

Using regression analysis and weather variables the de-
vices energy-consumption is predicted and abnormal usage
is highlighted. The authors of [6] use kernel regression to
forecast device consumption and devices that behave differ-
ently from the predictions are reported as anomalous. Re-

gression models are also used with performances indices to
monitor the HVAC’s components and identify inefficiencies
[28]. The implementation of these approaches in real sit-
uations is difficult, since it requires a training dataset and
non-trivial parameter tuning.

Similar to our approach, previous studies identify abnor-
mal energy-consumption using frequency analysis and un-
supervised anomaly detection methods. The device’s con-
sumption is decomposed using Fourier transform and out-
lier values are detected using clustering techniques [2, 27, 8].
However, these methods assume a constant periodicity in the
data and this causes many false positives in alarm report-
ing. We do not make any assumption about the device usage
schedule. We only observe and model device relationships.
We take advantage of a recent frequency analysis technique
that enables us uncover the inter-device relationships [10].
The identified anomalies correspond to devices that deviate
from their normal relationship to other devices.

Reducing a building’s energy consumption has also re-
ceived a lot of attention from the research community. The
most promising techniques are based on occupancy model
predictions as they ensure that empty rooms are not over
conditioned needlessly. Room occupancy is usually moni-
tored through sensor networks [1, 9] or the computer net-
work traffic [19]. These approaches are highly effective for
buildings that have rarely-occupied rooms (e.g. conference
room) and studies show that such approaches can achieve up
to 42% annual energy saving. SBS is fundamentally different
from these approaches. SBS identifies the abnormal usage
of any devices rather than optimizing the normal usage of
specific devices. Nevertheless, the two approaches are com-
plementary and energy-efficient buildings should take ad-
vantage of the synergy between them.

7. DISCUSSION
SBS is a practical method for mining device traces, un-

covering hidden relationships and abnormal behavior. In
this paper, we validate the efficacy of SBS using the sensor
metadata (i.e. device types and location), however, these
tags are not needed by SBS to uncover devices relationships.
Furthermore, SBS requires no prior knowledge about the
building and deploying our tool to other buildings requires
no human intervention – neither extra sensors nor a training
dataset is needed.

SBS is a best effort approach that takes advantage of all
the existing building sensors. For example, our experiments
revealed that SBS indirectly uncovers building occupancy
through device use (e.g. the elevator in the Building 2).
The proposed method would benefit from existing sensors
that monitor room occupancy as well (e.g. those deployed
in [1, 9]). Savings opportunities are also observable with a
minimum of 2 monitored devices and building energy con-
sumption can be better understood after using SBS.

SBS constructs a model for normal inter-device behavior
by looking at the usage patterns over time, thus, we run the
risk that a device that constantly misbehaves is labeled as
normal. Nevertheless, building operators are able to quickly
identify such perpetual anomalies by validating the clusters
of correlated devices uncovered by SBS. The inspection of
these clusters is effortless compare to the investigation of
the numerous raw traces. Although this kind of scenario is
possible it was not observed in our experiments.

In this paper, we analyze only the data at medium fre-
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quencies, however, we observe that data at the high fre-
quencies and residual data (Figure 5) also permits us to
determine the device type. This information is valuable to
automatically retrieve and validate device labels – a major
challenge in building metadata management.

This paper aims to establish a methodology to identify
abnormalities in device power traces and inter-device usage
patterns. In addition, we are planning to apply this method
to online detection using, for example, a sliding window to
compute an adaptive reference matrix that evolve in time.
However, designing such system raises new challenges that
are left for future work.

8. CONCLUSIONS
The goal of this article is to assist building administrators

in identifying misbehaving devices in large building sensor
deployments. We proposed an unsupervised method to sys-
tematically detect abnormal energy consumption in build-
ings: the Strip, Bind, and Search (SBS) method. SBS uncov-
ers inter-device usage patterns by striping dominant trends
off the devices energy-consumption trace. Then, it monitors
device usage and reports devices that deviate from the norm.
Our main contribution is to develop an unsupervised tech-
nique to uncover the true inter-device relationships that are
hidden by noise and dominant trends inherent to the sensor
data. SBS is used on two sets of traces captured from two
buildings with fundamentally different infrastructures. The
abnormal consumption identified in these two buildings are
mainly energy waste. The most important one is an instance
of a competing heater and cooler that caused the heater to
waste around 2500 kWh.
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