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ABSTRACT
Internet traffic anomalies are a serious problem that com-
promise the availability of optimal network resources. Nu-
merous anomaly detectors have recently been proposed, but
maintaining their parameters optimally tuned is a difficult
task that discredits their effectiveness for daily usage. This
article proposes a new anomaly detection method based on
pattern recognition and investigates the relationship between
its parameter set and the traffic characteristics. This analy-
sis highlights that constantly achieving a high detection rate
requires continuous adjustments to the parameters accord-
ing to the traffic fluctuations. Therefore, an adaptive time
interval mechanism is proposed to enhance the robustness
of the detection method to traffic variations. This adap-
tive anomaly detection method is evaluated by comparing
it to three other anomaly detectors using four years of real
backbone traffic. The evaluation reveals that the proposed
adaptive detection method outperforms the other methods
in terms of the true positive and false positive rate.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring

General Terms
Measurement, Security, Performance

Keywords
Internet traffic, Anomaly detection, Pattern recognition

1. INTRODUCTION
The success of Internet services results in a constant net-

work traffic growth along with an increasing number of anoma-
lies such as remote attacks and misconfigurations. These
anomalies represent a large fraction of the Internet traffic
that is unwanted and penalizes legitimate users from ac-
cessing optimal network resources. Therefore, detecting and
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diagnosing these threats are crucial tasks for network op-
erators that are trying to maintain the Internet resources
made available. Intensive studies have been carried out in
this field, but the proposed anomaly detection methods still
have important drawbacks [11, 8]. Indeed, the sensitivity of
these methods to parameter tuning and traffic variations are
still open issues. Therefore, in practice, selecting the opti-
mal parameters is not intuitive as the relationship between
the parameters and traffic characteristics is challenging.

Only a few works have investigated these important draw-
backs currently discrediting anomaly detectors. A careful
study of the approaches based on principal component anal-
ysis (PCA) was carried out by Ringberg et al. [11], and
they identified four main challenges including the sensitiv-
ity to analyzed traffic and parameter tuning. In addition, an
attempt to automatically tune a method based on gamma
modeling and sketches was conducted by Himura et al. [8].
They designed a learning process for predicting the opti-
mal parameters regarding the best parameters for past data.
However, this method suffers from a high error rate as un-
expected events do appear.

Recently, a pattern recognition based method has been
proposed [6, 7]. The main idea of this detection method is
to monitor the traffic in 2D pictures where anomalies ap-
pear as “lines”, which are easily identifiable using a pattern
recognition technique called the Hough transform [5]. One
advantage of this method is that its simple principles allow
us to intuitively select a suitable parameter set. The opti-
mal values of the parameters, however, fluctuate along with
the traffic throughput variations and require continuous ad-
justments, making it unpractical for real usage. In order to
provide a detector that is easily tunable and robust to traffic
variations, this article follows a similar approach to [6], but it
uses fundamentally different 2D pictures that allow for bet-
ter highlighting anomalies. Moreover, the main contribution
of this work is to obtain a complete understanding of the
proposed method parameter set and provide a mechanism
that automatically tunes it based on the traffic variations.
The advantages of this adaptive method are demonstrated
by comparing its results to those obtained using fixed pa-
rameter tunings and those of three other anomaly detectors
using four years of real Internet traffic. The results high-
light the superiority of the proposed method in terms of the
true positive and false positive rates, emphasizing that au-
tomatically adjusting the parameter set in regards to the
traffic fluctuations is crucial for continuously performing an
accurate level of detection.
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Table 1: Different kinds of common anomalies and their
particular traffic feature distributions.

Anomaly Traffic feature distribution

Port scan Traffic distributed in destination
port space and concentrated on single
destination host.

Network scan, Traffic distributed in destination
Worm, Exploit address space and concentrated on

limited number of destination ports.
DDoS, Netbot, Traffic distributed in source address
Flash crowd space and concentrated on limited

number of destination addresses.

2. ABNORMAL DISTRIBUTION OF TRAF-
FIC FEATURES

Recent works have identified anomalous traffic as alter-
ations in the distributions of the traffic features [10, 6, 2,
13, 4]. For example, Table 1 lists several kinds of anoma-
lies commonly identified in Internet traffic. Each kind of
anomaly inherently affects the distribution of two traffic fea-
tures. Similarly, in this article an anomaly refers to a set of
flows altering the distribution of at least one of the four
following traffic features: the source IP address, destina-
tion IP address, source port, and destination port. How-
ever, the proposed approach for observing these alterations
in the traffic feature distributions is substantially different
from that in other works. Previously, anomalies have been
mainly detected by identifying the outliers in the aggregated
traffic using different formalisms — e.g., signals [10], his-
tograms [4, 2], or matrices [12] — whereas, the proposed
method identifies particular patterns in pictures. The ana-
lyzed pictures are two-dimensional scatter plots, where each
axis represents a traffic feature, each plot stands for traffic
flows, and the particular traffic feature distributions of the
anomalies are easily identifiable as lines.

Figure 1 shows two examples of the pictures analyzed in
this article. Figure 1a displays traffic with regards to its
destination port and destination address. This graphical
representation of the traffic makes it easy to discriminate
the port scan, network scan, worm, and exploit from the
benign traffic as they appear as lines in the picture (Fig.
1a). Figure 1b, however, displays the traffic in regards to its
destination and source addresses, and permits other kinds
of anomaly to be observed. For instance, distributed denial
of service (DDoS), flash crowd and botnet activities appear
as horizontal lines in this scatter plot.

The three main advantages of this approach over the pre-
vious works are [11]: (1) the anomalous flows are inherently
pinpointed in the scatter plots whereas the anomalous flows
detected in a signal are difficult to identify. (2) The pro-
posed approach is able to monitor the pattern of a large-scale
anomaly whereas the methods detecting anomalous traffic as
outliers fail if a majority of the traffic is contaminated. (3)
In regards to the traffic features monitored by the pictures
and the direction of the identified line, one can easily deduce
the kind of observed anomaly.
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Figure 1: Example of two pictures highlighting anomalous
traffic as lines.

3. ANOMALY DETECTION METHOD
The anomaly detection method proposed in this article

consists of five main steps: (1) The traffic of the current
time interval is mapped onto five different pictures. (2) The
Hough transform is computed on each picture to uncover
the plot distributions. (3) Abnormal plot distributions are
detected in the Hough spaces. (4) Traffic information corre-
sponding to the anomalous plots are retrieved and reported.
(5) The time interval is shifted and step 1 is repeated.

3.1 Pictures computation
The proposed approach takes advantage of several kinds

of pictures to monitor the different aspects of the traffic and
highlight the different kinds of anomalies. The analyzed
pictures are 2-D scatter plots designed from four traffic fea-
tures: {source IP address, destination IP address, source
port, destination port}. For the remainder of this paper the
term traffic features will refer to only these four traffic fea-
tures. The five picture categories correspond to all the pos-
sible pairs of traffic features containing IP address. Namely,
the x and y axis of the picture, respectively, correspond to
the following pairs of features:

• Source IP address, destination IP address

• Source IP address, source port

• Source IP address, destination port

• Destination IP address, source port

• Destination IP address, destination port

A flow in the analyzed pictures is represented by a plot
that is located using the two following mechanisms. (1)
The port space is shrunk to the size of the pictures: Lets
assume a 1000-pixel picture (ySize = 1000) that has a y
axis standing for the source port, then a http flow, i.e.,
SrcPort = 80, is plotted at y = bSrcPort ∗ ySize/216c =
b80 ∗ 1000/65535c = 1, and each pixel of the picture repre-
sents approximately b65535/1000c = 65 distinct port num-
bers. (2) The IP address space is at first hashed by ignor-
ing the first h bits of the addresses and then shrunk to the
size of the picture. For example, supposing h = 16 and a
1000 pixel wide picture (xSize = 1000) with an x axis as
the source IP, then a flow from the source IP 192.168.10.10
is plotted at x = b(SrcIP mod 232−h) ∗ xSize/232−hc =
b(192.168.10.10 mod 216)∗1000/216c = b(0.0.10.10)∗1000/216c =
39. Notice that this article only deals with square pictures,
meaning that the xSize = ySize.
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(a) Picture (b) Hough space

Figure 2: Principles of Hough transform.

3.2 Hough transform
A well-known image processing technique called the Hough

transform [5, 7] helps us in extracting the relevant informa-
tion from computed pictures. The Hough transform is com-
monly used to detect the parametric structures (e.g., line,
circle, or ellipse) in pictures and has the advantage of being
robust to noise and able to detect incomplete shapes.

The basic usage of the Hough transform allows for the
identification of lines in a picture. It consists of a voting
procedure, where each plot of the picture votes for the lines
it belongs to. Formally, each plot in the picture p = (xp, yp)
votes for all the θ and ρ that satisfy ρ = xp ·cos(θ)+yp ·sin(θ)
(line equation in polar coordinates). All the votes are stored
in a two-dimensional array, called the Hough space, in which
one dimension stands for θ and one for ρ. Figure 2 depicts
an example of the Hough transform. The analyzed picture
(Fig.2a) contains three plots, and the votes for each plot are
represented by a curve in the Hough space (Fig.2b). The
maximum number of votes in the Hough space is obviously at
the intersection of the three curves I = (θ0, ρ0), identifying
the line passing through the 3 plots, ρ0 = x · cos(θ0) + y ·
sin(θ0).

In order to find the local maxima in the Hough space,
thus the prominent lines in the picture, a robust peak detec-
tion based on the standard deviation σ of the Hough space
is implemented. Therefore, all flows corresponding to the
elements of the Hough space that are higher than 3σ are
reported as anomalous.

3.3 Complexity
The computational complexity of the proposed method is

mainly one of the Hough transforms that is linear to the
number of plots in picture. In a worst case scenario, each
plot represents a single flow so the number of plots in the
pictures is equal to the total number of flows N . Let f = 5
be the number of picture categories, t the traffic duration
divided by the time interval, and ni,j,k the number of plots
in the picture k of category i at the time interval j. The
cost of the proposed algorithm in the worst case is linear to
N :

fX
i=1

tX
j=1

O(ni,j) =

5X
i=1

O(N) = O(N)

In our experiments, the proposed method takes about one
minute to analyze a 15-minute traffic trace from the MAWI
archive.

4. DATA AND PROCESSING
All the experiments conducted in this work are based on

the traffic traces publicly available in the MAWI archive

Table 2: Heuristics deduced from main anomalies previously
reported [1, 6] and manual inspection of data-set considered
in this article.

Category Label Details

Attack Sasser Traffic on ports 1023/tcp, 5554/tcp
or 9898/tcp

Attack RPC Traffic on port 135/tcp
Attack Ping High ICMP traffic
Attack Other Traffic with more than 50% of SYN,

attacks RST or FIN flag. And http, ftp, ssh,
or dns traffic with more than 30%
of flag SYN

Attack NetBIOS Traffic on ports 137/udp or 139/tcp
Special Http Traffic on ports 80/tcp and 8080/tcp

with less than 30% of SYN flag
Special dns, ftp, Traffic on ports 20/tcp, 21/tcp,

ssh 22/tcp or 53/tcp&udp with less
than 30% of SYN flag

Special Unknown Traffic that does not match
other heuristics

[3]. This database provides daily backbone traffic traces
that contain 15-minutes of traffic taken from a trans-Pacific
link between Japan and the U.S. This article particularly
focuses on two data sets from the MAWI Samplepoint-B;
(1) the first week of August 2004 was particularly affected
by the Sasser worm [1, 6] and provides valuable support for
illustrating the benefits of the proposed method. (2) All the
traffic recorded from 2003 to 2006 allowed us to evaluate the
global performance of the proposed method by comparing its
results to the ones of other anomaly detectors.

Due to the lack of ground truth data for backbone traffic,
the evaluation of the proposed detector relies on heuristics
that is fundamentally independent from the principle of the
proposed method (Table 2). Indeed, these heuristics is based
on well-known port numbers and abnormal usages of TCP
flags [1, 6], whereas the proposed method uses only the port
numbers as indexes and does not rely on the application
information related to them nor the TCP flags. Heuris-
tics classifies traffic into two categories, attack and special,
and helps in quantifying the effectiveness of the detection
method.

An anomaly detector is expected to report more traffic
classified as attacks than those labeled special. Thus, the
accuracy of a detector is defined as the ratio of the alarms
classified as attacks by the heuristics listed in Table 2.

5. PARAMETER TUNING AND DRAWBACKS

5.1 Experimental parameter tuning
The following experiments aim at finding the optimal pa-

rameter tuning of the proposed method using one week of
traffic affected by the Sasser worm (Section 4). Furthermore,
these experiments uncover the correlation between the two
main parameters, i.e., the size of picture and the time inter-
val, and show that the performances of the proposed method
are not affected by any variance in the h value as long as the
number of possible indexes is higher than the picture size,
232−h > xSize.
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Figure 3: Accuracy of proposed method using four different
picture sizes.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0  1024  2048  3072  4096  5120  6144  7168  8192

N
um

be
r 

of
 p

lo
ts

Image size

Maximum number of plots

(a) Maximum acceptable num-
ber of plots

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  1024  2048  3072  4096  5120  6144  7168  8192

P
lo

t d
en

si
ty

Image size

Maximum plot density

(b) Maximum acceptable plot
density

Figure 4: Evaluation of maximum acceptable number of
plots to perform the Hough transform. The plot density
is the maximum acceptable number of plots over the picture
area.

Figure 3 depicts the average accuracy of the detection
method using numerous parameter values. It highlights that
the proposed method is able to achieve an accuracy that is
higher than 0.9 for any time interval > 4s and a suitable
picture size. Furthermore, Fig. 3 indicates that the optimal
picture size is proportional to the size of the time interval.
For instance, if the time interval is less than 8s the best per-
formance is obtained with a picture size set to 1024, whereas
the time interval ranges (9, 16) are suitable for a picture size
equal to 2048, and so forth. Intuitively, a larger time inter-
val involves a greater number of plots in the pictures; thus,
to avoid meaningless saturated pictures, the optimal size of
a picture increases along with the size of the time interval.

Although the specific values given here are suitable for
the analyzed traffic, different values might be more effective
for traffic having different properties. Obviously, traffic with
the same properties but a higher throughput displays more
plots in the pictures, and thus in this case, smaller time
intervals are required to maintain an acceptable number of
plots in the pictures.

5.2 Evaluation of optimal parameter
The time interval is the parameter that controls the amount

of traffic displayed in the pictures. Thus, as the proposed
method inherently translates the traffic flows to the plots in
the pictures, the time interval allows us to select the quan-
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Figure 5: Plot growth for different picture categories
(xSize = 8192).

tity of plots appearing in the pictures. The challenge in
setting the time interval is the trade-off between displaying
enough plots to have relevant pictures and limiting the sur-
rounding noise representing the legitimate traffic and hiding
anomalies.

The sensitivity of the implemented Hough transform to
the number of plots in the pictures is analyzed using syn-
thetic pictures that have a random line and various amounts
of uniformly distributed noise. The algorithm was performed
100 times on different pictures with the same level of noise.
If the 100 tests are successful then the noise is increased and
the algorithm is again performed. The highest noise level for
which all 100 executions of the algorithm succeed defines the
maximum acceptable number of plots in a picture. This ex-
periment was conducted using six different picture sizes, as
indicated in Fig. 4a. As expected, the maximum acceptable
number of plots in the pictures increases with the picture
size. Figure 4a shows that the maximum acceptable num-
ber of plots for picture sizes of 1024, 2048, 4096, and 8192
are respectively 33000, 95000, 275000, and 781000. Figure
4b shows that this increase is not linear to the area of the
picture and the common upper bound for all the considered
picture sizes is approximately 1% of the picture area.

5.3 Dispersion of plots in pictures
The previous section provided an insight on how to se-

lect the suitable time interval for a particular picture, but
the proposed method analyzes five different pictures at the
same time. A crucial task is to understand the divergence
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between the different kinds of pictures. Since the five picture
categories monitor distinct feature spaces, plots correspond-
ing to the same traffic are differently dispersed in all the
pictures. Therefore, the traffic is usually depicted by using
a different number of plots for two pictures from different
categories. For example, Fig. 5a shows the number of plots
for the five kinds of pictures for several time interval sizes.
This figure highlights that the number of plots appearing
in each picture category increases at different rates. A slow
increase in the number of plots means that many flows share
the same instance in the monitored feature spaces, whereas
a rapid growth highlights the flows spreading into the ob-
served feature spaces. The rate of increase of the plots for
each picture category is strongly related to the throughput
and the dispersion of the traffic in the feature space.

Since anomalies alter the traffic feature distribution, they
also significantly affect the increase in the number of plots.
Figure 5b is a typical example where the increase in plots for
certain picture categories is rapidly increasing due to anoma-
lous traffic. Indeed, the traffic analyzed in Fig. 5b contains
an outbreak of the Sasser worm highlighting a considerable
increase in the number of plots for two picture categories
monitoring the destination address. This observation is in
accord with the behavior of the Sasser worm manually ob-
served in the traffic trace, that is, the worm tries to infect
numerous remote hosts to spread throughout the network.

Despite their differences, the two traffic analyzed in Fig.
5 are taken from the same traffic trace (Fig. 5b represent-
ing the first three minutes of the traffic trace, whereas Fig.
5a is the traffic recorded three minutes later), illustrating
two drawbacks of the proposed method. (1) For the same
traffic, the number of plots in all the picture categories is
significantly different. Thus, the suitable time interval for a
picture from a certain category does not necessarily suit the
pictures from the other categories. (2) The increase in plots
for a certain picture category sharply varies especially when
anomalous traffic appears. Thus, the suitable time interval
for a single picture category fluctuates over time.

6. ADAPTIVE TIME INTERVAL
Here, an improved version of the anomaly detection method

is proposed to overcome the drawback identified in the pre-
vious section. This new version assigns different time in-
tervals to all the picture categories and adapts these time
intervals to the traffic variation. Therefore, the value of the
time intervals is no longer a fixed value taken as an input,
but it is automatically computed by taking into account the
throughput and the traffic distribution in the traffic feature
spaces.

The proposed improvement consists of controlling the amount
of monitored traffic based on the quantity of plots in the pic-
ture instead of the time interval. The Hough transform is
performed only if a certain number of plots p are displayed
in the picture (regardless of the time interval corresponding
to the traffic mapped into the picture), and other pictures
keep monitoring the traffic until they display a sufficient
number of plots, p. Therefore, all the pictures stand for dif-
ferent time intervals and the Hough transform is performed
at different instants of time for each picture. The first two
steps of the algorithm proposed in Section 3 are replaced by:
(1) Map traffic to pictures until a picture displays p plots.
(2) Compute the Hough transform for pictures with p plots.
In addition, the time interval parameter is replaced by p,
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Figure 6: Evolution of time interval corresponding to pic-
tures computed during 15 minutes of traffic.

which is the number of plots required to perform the Hough
transform. The value of p is directly deduced from the pic-
ture size to assure the success of the Hough transform. The
upper bound for p is 1% of the picture area (Section 5.2),
and the lower values help in quickly reporting the anomalies
since the Hough transform is performed earlier. However,
too small p values result in irrelevant pictures as the sample
traffic displayed in pictures is insignificant. In the follow-
ing experiments, p is arbitrarily set to 0.5% of the picture
area, p = 0.05 · xSize2. Hereafter, this new version of the
detection method is referred to as the adaptive method.

6.1 Performance improvement
The benefit of the adaptive method is evaluated by us-

ing one week of traffic (Section 4). For clarity reasons and
because all the traffic traces reach a similar conclusion, the
following focuses only on the first day of the analyzed traffic.

6.1.1 Robustness to traffic variation
Figure 6 displays the time intervals corresponding to all

the pictures computed during the analysis of the 15 minutes
of traffic. The first four minutes of this traffic are signif-
icantly affected by the Sasser worm resulting in a higher
throughput and an increase in the number of destination
addresses. Nevertheless, the method successfully handled
the traffic variation, that is, the time intervals represented
by the pictures monitoring the destination address remain
from 1 to 5 seconds during the Sasser outbreak (Fig. 6).
However, the same quantities range from 14 to 25 seconds
during the last four minutes of traffic, where the traffic is
much less polluted by the Sasser worm. This example il-
lustrates the benefit of the adaptive method since selecting
a fixed value for the time interval of the basic method is
challenging.

6.1.2 Accuracy gain
The only parameter of the adaptive method is the picture

size, and by setting it to three different values, namely 1024,
2048, and 4096, the same high accuracy score is observed,
0.99, 0.98, and 0.99, respectively. However, the number of
reported alarms decreases as the picture size increases, which
is 373, 173, and 117 events respectively. Thus, for the fol-
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Figure 7: PDF of accuracy of four detectors for four years
of MAWI traffic.

lowing experiments the picture size is set to 1024 in order
to report as much anomalous traffic as possible.

The comparison between the two versions of the method
emphasizes the better false positive and true positive rates
of the adaptive method. Namely, it identifies 369 source ad-
dresses infected by Sasser (i.e. 86% of the Sasser traffic man-
ually identified). However, the basic method, with identical
parameters but a fixed time interval of 10 seconds, identifies
only 258 source addresses related to Sasser (i.e. 60% of the
Sasser traffic manually identified). The basic version of the
method is able to identify the same amount of Sasser traffic
only if the time interval is set to one second, however, in
this case 229 http traffics were also reported and a manual
inspection revealed that they are benign traffic regarded as
false positive alarms.

7. EVALUATION
The adaptive detection method is evaluated by analyz-

ing four years of MAWI traffic (i.e. 2003, 2004, 2005, and
2006) and comparing its results to the outputs of three
other anomaly detectors based on different theoretical back-
grounds, which are: (1) the well-known PCA-based detector
[10] (in this work the implementation of this detector relies
on sketches to analyze traffic taken from a single link [9]), (2)
the detection method based on multi-scale gamma modeling
and sketches [4], and (3) the detector based on the Kullback-
Leibler (KL) divergence and association rule mining [2]. The
picture size parameter of the adaptive method is set to 1024,
and the Gamma-based method is optimally tuned using the
method proposed by Himura et al. [8], whereas, the param-
eters of the PCA and the KL methods are set with fixed and
arbitrary values that are globally suitable for the analyzed
MAWI traffic.

The four detectors aim at finding any kinds of traffic
anomaly by inspecting only IP header. However, they ag-
gregate traffic using different formalisms, i.e., the proposed
method monitor the traffic using pictures whereas the PCA-
based one analyzes time series and the gamma and KL de-
tectors take advantage of histograms.
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Figure 8: Breakdown of alarms reported by four detectors
and classified as attacks during four years of MAWI traffic.

Figure 7 shows the accuracy achieved by the four detectors
for each year of analyzed traffic. The average accuracy of the
proposed method is higher than the one of the three other
detectors during the four years of MAWI traffic. Among
the three other detection methods the KL-based one is the
best detector in terms of accuracy, moreover, it occasionally
outperforms the method proposed in this article (Fig. 7b
and Fig. 7c).

The circumstances in which the KL-based detector re-
markably outperforms the other detectors were thoroughly
inspected and this highlighted the fact that this detector re-
ports a high ratio of attacks but out of only a small number
of alarms. Consequently, the KL-based detector achieves a
high attack ratio along with a high false negative rate (i.e.
missed anomalies). Figure 8 shows the quantity of attacks
reported by each detector classified with the labels from Ta-
ble 2 (RPC is omitted as only 11 alarms of this kind were
identified in the four years of traffic) and emphasizes the
large amount of anomalies missed by the KL-based one.

The PCA and Gamma-based detectors, however, report
the same quantity of attacks as the proposed method along
with numerous alarms classified as special (Fig. 7). Al-
though the proposed method is more sensitive to Sasser
and attacks towards NetBIOS services, the Gamma-based
method detected slightly more ping flood traffic (66 alarms)
and traffic labeled as other attacks (337 alarms) for the
four years of analyzed traffic. Nevertheless, the PCA and
Gamma-based detectors were considerably worse than the
adaptive method in terms of accuracy, and this drawback is
due to the quantity of traffic classified as special that was
reported by these two detectors (i.e. high false positive rate).

The advantage of the adaptive method is to consistently
adapt its time interval over the four years of analyzed traf-
fic, and therefore, it constantly detects a large quantity of
anomalous traffic while the number of reported benign traf-
fic is low.

8. CONCLUSIONS
This article proposed a new anomaly detection method

that takes advantage of image processing techniques to iden-
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tify the flows with abnormal traffic feature distributions.
Crucial challenges rarely addressed in the appropriate liter-
ature were uncovered by investigating the major drawbacks
of this method; the sensitivity of anomaly detectors to traffic
variations and the role of the time scale in anomaly detec-
tion. Addressing these two issues resulted in a significant
improvement for the proposed detection method that over-
comes any adverse conditions as it analyzes traffic within
a time interval that is automatically adapted to the traffic
throughput and the distribution of traffic features.

The evaluation of this adaptive method using real Internet
traffic highlighted its ability to maintain a high detection
rate while the traffic was significantly altered by anoma-
lies. Therefore, these experiments indicated that the adap-
tive time interval enabled 26% more worm traffic to be de-
tected, and decreased the false positive rate. The adaptive
detection method proposed in this paper is also validated by
comparing it with three other detection methods and using
four years of real backbone traffic. The results highlighted
that the proposed adaptive method allows for the detection
of almost all the anomalies reported by the other detectors
while it achieves the lowest false positive rate.
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