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ABSTRACT
Botnets are accountable for numerous cybersecurity threats.
A lot of efforts have been dedicated to botnet intelligence,
but botnets versatility and rapid adaptation make them par-
ticularly difficult to outwit. Prompt countermeasures re-
quire effective tools to monitor the evolution of botnets.
Therefore, in this paper we analyze 5 months of traffic from
different botnet families, and propose an unsupervised clus-
tering technique to identify the different roles assigned to
C&C servers. This technique allows us to classify servers
with similar behavior and effectively identify bots contact-
ing several servers. We also present a temporal analysis
method that uncovers synchronously activated servers. Our
results characterize 6 C&C server roles that are common to
various botnet families. In the monitored traffic we found
that servers are usually involved in a specific role, and we
observed a significant number of C&C servers scanning the
Internet.
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1. INTRODUCTION
Serious cybersecurity threats are often attributed to large

networks of infected hosts controlled by criminal organiza-
tions, and commonly referred as botnets. The numerous
compromised hosts rallying these networks empower crimi-
nals to carry out extensive harmful actions, including Dis-
tributed Denial-of-Service attacks (DDoS), spam campaigns,
click frauds, and data thefts.

In reaction to the severe threats posed by botnets, secu-
rity software companies, governmental agencies, and the re-
search community have dedicated a lot of effort into botnet
intelligence trying to anticipate imminent threats and take
countermeasures to neutralize them. In return botnets have
been increasingly sophisticated, evading introspection and
becoming more resilient to disruptions of key botnet com-
ponents. This endless cat-and-mouse game between security
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Figure 1: Overview of botnets: the botmaster is
indirectly sending orders (e.g. using proxy servers)
to the C&C servers that are relayed to the bots when
they are connected.

experts and cyber-criminals has led to an abundant scien-
tific literature, advanced security tools but also very complex
and constantly evolving botnets. Continuously monitoring
botnets is hence increasingly necessary to survey new mecha-
nisms devised by botmasters and assist defenders for prompt
responses to new threats.

The structure of botnets is typically dissected in three
key components (see Figure 1), the botmaster, the Com-
mand and Control servers (C&C servers) and the bots. This
structure stems from the fundamental mechanisms needed
to create and operate botnets. These mechanisms include
four stages that are inherent to botnets life-cycle (see [27]
for more details on botnet life-cycle): (1) Conception: The
botmaster designs the botnet regarding its needs and im-
plements corresponding malware. (2) Recruitment : The
botmaster usually requires substantial resources to execute
preeminent attacks. Consequently, the implemented mal-
ware infects as many hosts as possible by exploiting vulner-
abilities, or deceiving Internet users. (3) Interaction: As
a consequence of the infection, bots acquire access to the
botnet communication channel. This channel is maintained
by C&C servers, and it allows bots to signal their presence
in the botnet and receive orders from the botmaster. (4)
Attack : The last stage is the primary goal of the botnet.
Depending on the botmaster motivations the bots could per-
form, for example, DDoS attacks, spam distribution, or click
frauds.

In this work, we monitor botnet traffic to study the differ-
ent types of communications initiated by C&C servers and



their roles in the botnet. The analyzed traffic is captured at
multiple measurement points including edge networks, back-
bone links and Internet exchange points for 5 months. This
extensive dataset presents exceptional benefits for the study
of botnet behaviors. Indeed, the captured traffic encom-
passes communications from numerous infected hosts from
various botnet families, therefore, providing a wide range of
possible botnet behaviors. Nonetheless, monitoring traffic in
backbone networks raises certain challenges, the main one
being the partial coverage because of high packet sampling
rate and routing asymmetry.

The goal of this work is to leverage the potential of data
captured on large-scale networks. We devise robust and
unsupervised techniques to infer roles of C&C servers, and
uncover their spatio-temporal characteristics, namely, C&C
servers with similar peers or synchronously operating. The
roles of C&C servers are deducted from traffic characteris-
tics that are not bound to a specific protocol or applica-
tion, hence, also suitable for unknown botnet families. Us-
ing C&C roles, we determine when servers are effectively
communicating to bots and uncover servers sharing common
peers. Finally, we propose a simple correlation technique to
identify C&C servers that are activated at the same time.

Overall, our examination of botnet traffic exposes key
characteristics of C&C operations. (1) The traffic of servers
features 6 distinguishable behaviors that exhibit the roles
of C&C servers in botnets. (2) A C&C server is rarely
involved in many roles, as different tasks are usually per-
formed by different servers. (3) A large fraction of the C&C
servers reported by popular blacklists are scanning Internet
hosts, which is to be taken into consideration when esti-
mating botnets size from monitored traffic. (4) Distributed
C&C infrastructures are identifiable using the servers spa-
tial and temporal correlations, however, we observe asyn-
chronous bots communications which may be detrimental
for botnet detectors assuming bots synchronous behavior.

The remainder of this paper is structured as follows, Sec-
tion 2 provides details on the collected traffic and C&C
blacklists analyzed in this study, and Section 3 exhibits a
macroscopic analysis of this dataset. The three following
sections expose three analyses that reveal different aspects
of botnets life-cycle: Section 4 presents the role identifica-
tion method and describes C&C roles identified in captured
traffic, then, Section 5 depicts uses of the identified C&C
roles to investigate servers with common peers, and, Section
6 proposes a correlation technique to cluster C&C servers
with similar activities. Section 7 and 8 state the related
work and conclude this paper.

2. DATASET
Our analysis relies on two types of datasets. Firstly, bot-

nets are identified using blacklists of C&C servers, then, the
botnets behaviors are derived from passively measured data
traffic.

2.1 Blacklists
Botnet detection has received a lot of attention in the past.

Researchers have proposed numerous techniques to identify
infected hosts, ranging from web browser infections [4, 8]
and binaries introspection [21, 38, 17] to connection pattern
analysis in network traffic [12, 11, 14].

In this article we leverage results obtained from certain of
these techniques to monitor botnet infrastructures. Namely,

we obtain blacklists of C&C servers from three different or-
ganizations: Abuse.ch, Cybercrimetracker, and Spamhaus.
An evaluation of most of the analyzed blacklists is presented
in [22].

Abuse.ch 1 is a Swiss security site that maintains black-
lists for three different types of C&C servers. These black-
lists, also known as trackers, report the network activities
of malicious binaries executed in a controlled environment.
The most active tracker is dedicated to the infamous Zeus
crimeware toolkit. Zeus is a trojan horse malware that en-
ables hackers to infect and control hosts connected to the
Internet [3]. Originally designed for credentials-stealing, the
original Zeus code base have been extensively revamped by
numerous threat actors to achieve diverse malicious activi-
ties such as DDoS attack, malware dropping, or Bitcoin theft
[1, 31]. The malware spreads mainly via spam emails and
phishing, and Symantec estimates the number of infected
hosts around 4 millions in 2014 [32].

Zeus botnets have been severely disrupted by several coor-
dinated takedown actions from governmental organizations,
including the F.B.I. and law enforcement counterparts in
several countries [10]. The impact of these takedowns is,
however, mitigated by the broad variety of botnets and the
constant adaptation of malwares to circumvent detections
mechanisms. Thereby, major Zeus botnet takedowns have
been subsequently followed by the emergence of new Zeus
variants. The family of Zeus malware is considered as the
most commonly used financial trojans in 2014 [32], and the
abuse.ch Zeus tracker allows us to monitor four well known
variants: Zeus, Ice IX, Citadel, and KINS.

Abuse.ch is also providing a tracker for Feodo, a banking
trojan that emerged in 2010. This tracker monitors different
variants of the malware known as Cridex, Bugat, Geodo, or
Dridex. Recent surges of the latest variant, Dridex, have
been predominantly targeting corporate accounting services
[7], and have been ranked by Symantec as the third most
common financial trojan in 2014 [32].

The abuse.ch Palevo tracker monitors an older malware,
first appeared in 2008, that is mainly spreading through P2P
networks, instant messaging and removable drives. This
malware is also known as Rimecud, Butterfly bot and Pilleuz.

Cybercrimetracker2 is another security site that tracks
malware activities, and reports the C&C IP addresses for
various malwares and their variants, including, Zeus, Citadel,
Kraken, Pony and Solar.

The Spamhaus3 Botnet Controller List (BCL) is a block
list service that reports the C&C servers detected by Spam-
haus. This list does not advertise the malware family asso-
ciated with the reported IP addresses, however, Spamhaus
reported in the past that BCL monitors numerous malwares,
including most of the ones reported by abuse.ch and cyber-
crimetracker [29].

We collected all IP addresses reported by abuse.ch, cyber-
crimetracker, and Spamhaus BCL from November 1st 2014
to March 31st 2015. Table 1 summarizes the number of re-
ported IP addresses for each blacklist (see the Interaction
row in Table 1).

In addition to these C&C blacklists, we also retrieved two
blacklists reporting Internet abuses and scans (see the Re-

1https://www.abuse.ch/
2http://cybercrime-tracker.net/
3https://www.spamhaus.org/bcl/



Table 1: Blacklists used in this article. Phase is the
corresponding stage in botnet life-cycle. #Reported
is the total number of IP addresses reported in the
blacklists. #Detected is the number of IP addresses
from blacklists that are identified in traffic traces
and #Peers is the number of IP addresses com-
municating with blacklisted hosts. Blacklists from
abuse.ch are labelled with (ch).

Phase Blacklist #Reported #Detected #Peers

R
ec

ru
it

.

OpenBL 12448 8583 151344
Honeypot 12265 8620 312237

In
te

ra
ct

io
n

Feodo (ch) 443 136 40798
Palevo (ch) 69 15 4249
Zeus (ch) 1491 349 98359
Pony 142 110 24769
Mailer 31 24 36313
Backdoor 32 20 111
Kraken 11 4 452
Phase 12 4 2
ZeuS 227 141 46357
Citadel 60 29 17761
Solar 54 40 12778
Stealer 16 13 45
Betabot 27 18 13656
WSO 11 9 1973
Spamhaus 1845 442 111767

cruit. row of Table 1). These two extra lists contain IP
addresses of scanners looking for vulnerable hosts or try-
ing to remotely log in Internet hosts. Since botnets behave
similarly in their recruitment phase, we take advantage of
these two blacklists to validate our study on C&C servers
behaviors.

The OpenBL4 project monitors Internet abuses from 39
locations around the world. The resulting blacklist con-
tains IP addresses of hosts attempting bruteforce attacks
and scans on certain well-known services, such as, email pro-
tocols (e.g. SMTP, POP3, IMAP), remote login (e.g. SSH,
Telnet) and web services (e.g HTTP, HTTPS).

The second blacklist reporting abuses is compiled from
the observations of a private Honeypot, thus, provide ma-
licious IP addresses opening suspicious connections or trying
to propagate malwares.

2.2 Data Traffic
We capture Internet traffic to investigate the connection

patterns of C&C servers and characterize their behaviors.
The analyzed traffic datasets consist of NetFlow and sFlow
data captured at multiple vantage points in Japan. Table
2 depicts all the considered measurement points along with
the sampling rate applied, the total number of bytes ac-
counted in IP headers, the number of captured packets and
the duration of the traces in days.

The vantage points are scattered at different locations in
the Internet infrastructure, so we can observe detailed traf-
fic of edge networks and more coarse-grained traffic at the
core of the network. Namely, we monitor traffic between
a major Japanese university campus and the Internet, and,

4https://www.openbl.org/

Table 2: Characteristics of measured traffic. Type of
link where the traffic is captured, sampling rate at
which packets are captured, total #Bytes reported
by captured IP headers, #Packets collected, and
#Days of the capture.

Name Type Sampling #Bytes #Packets #Days
Uni1 Access 1/512 11.8TiB 13361.3M 126
Cloud1 Access 1/2048 80.9GiB 96.1M 142
Cloud2 Access 1/2048 138.3GiB 125.6M 141
BB1 Backbone 1/8192 370.5GiB 563.5M 139
BB2 Backbone 1/8192 198.7GiB 354.7M 141
BB3 Transit 1/4096 596.2GiB 2678.7M 130
IXP1 Exchange 1/8192 159.0GiB 224.0M 70
IXP2 Exchange 1/32768 739.1GiB 821.2M 117

the two Internet access links of a research cloud, hereafter
respectively referred as Uni1, Cloud1 and Cloud2. The mon-
itored core infrastructures consist of two Internet Exchange
Points, IXP1 and IXP2, two backbone links in an academic
network and one transit link between the same network and
a commercial ISP, hereafter referred as BB1, BB2, and BB3.

Overwhelmed by the amount of data transmitted through
the monitored infrastructure, we can only capture a fraction
of the traffic. Consequently, our collectors are set to cap-
ture only one out of N packets transmitted on the network
interface. The sampling rate, 1/N , differs from one vantage
point to another, for instance, traffic collected at edge net-
works is sampled with rates varying from 1/512 to 1/2048,
while sampling rates for backbone links and IXPs range from
1/4096 to 1/32768 (see Table 2). These settings allow us to
thoroughly monitor the three edge networks, Uni1, Cloud1
and Cloud2, and obtain coarse observations of botnets in
backbone networks.

For all vantage points, we intended to continually capture
traffic from November 1st 2014 to March 31st 2015, but due
to the vast amount of data and hardware arbitrary issues,
data loss is inevitable. On average we collected 126 days of
traffic for each vantage points which accounts for more than
14TiB of traffic in total.

3. MACROSCOPIC OBSERVATIONS
Our analysis starts with an overview of the characteristics

of the blacklisted IP addresses found in the monitored traf-
fic. These observations aim to answer essential questions,
such as: How many blacklisted IP addresses appear in the
monitored traffic? How many hosts are communicating with
these addresses? Are blacklisted IP addresses promptly re-
ported? What is the average lifetime of blacklisted hosts?
To answer these questions, we extract every flow correspond-
ing to the IP addresses reported in the blacklists and inspect
basic features of these flows.

3.1 Peer Inference
Out of the 4101 unique blacklisted IP addresses, we found

864 of them in the traffic data. In Table 1, the #Detected
column summarizes the number of C&C servers found for
each blacklist. The next column, #Peers, represents the
number of IP addresses communicating with the identified
blacklisted IP addresses, in total we found 136407 unique
peers for blacklists corresponding to the Interaction phase.
A large fraction of the detected C&C servers are from the
Zeus malware family and its variants (i.e. Citadel), hence,



(a) Distribution of the number of peers
per C&C server.

(b) Distribution of the observation delay
per C&C server. Namely, the interval
of time between the first monitored traf-
fic timestamp and C&C first blacklisted
date.

(c) Distribution of the active time period
of C&C servers and contacted peers.

Figure 2: Overview of C&C servers and peers identified in blacklists and monitored traffic.

confirming that this malware is still very active. These are
also the C&C servers that have the most peers, followed by
the Feodo malware family.

We found around 200 peers contacting numerous C&C
servers across different malware families. Using reverse DNS
we confirmed that these hosts are part of two research projects
crawling websites or scanning Internet hosts in the whole IP
space. As the traffic emitted by these hosts is unrelated
with the malicious activity of C&C servers, we remove these
hosts from our dataset thus they are not affecting the fol-
lowing results.

3.2 Number of Peers
Figure 2a depicts the distribution of the number of peers

for each C&C server. The number of peers is calculated
using a time window centered on the C&C server reported
dates. These distributions are computed using different time
windows. Thereby, using 1-day time window the number
of peers is the total number of peers contacted during the
dates reported by the blacklists. A time window of 15 days
gives the number of peers contacted within a week before
or after the blacklisted dates, and a time window of 301
days gives the total number of peers for the monitoring time
period. With a 1-day time window we observe 269 C&C
servers including 138 servers (i.e. 51%) with only one peer.
Using larger time windows permits to capture more C&C
servers and more peers. With the 301-day long time window,
we observe 790 C&C servers of which 221 have only one peer.

The number of C&C servers with more than 100 peers
increases from 21 to 106 using a time window ranging from
1 day to 301 days. Consequently, analyzing traffic only dur-
ing the blacklists reported dates would miss valuable traffic
from C&C servers. We have not found a characteristic time
window length that could identify most peers without cov-
ering the entire measurement time period, so in the rest of
the paper we employ the maximum time window (i.e. 301
days) to identify peers. In these experiments the server with
the maximum number of peers contacted 83812 unique IP
addresses.

3.3 Observation Delay
Prompt reports are essential for efficient blacklists. Re-

porting a C&C server that have already contacted all its
bots is of little help to block botnet activities. However,
the previous subsection reveals that C&C servers converse
with Internet hosts during periods of time that are not re-
ported in the blacklists. To measure this temporal aspect
of blacklists we define the observation delay of a blacklisted
IP address as the time difference between the timestamp of
the first captured flow including this IP address and its first
reported date. Let obsDates(a) be the sequence of times-
tamps when flows to, or from, the IP address a are observed
and blDates(a) the sequence of timestamps when a is black-
listed, hence, the observation delay for a is defined as:

δ(a) = min(obsDates(a))−min(blDates(a)).

Figure 2b depicts the distribution of the observation delay
for the three organizations providing blacklists. The median
delay for both Spamhaus and Abuse.ch is around 0, mean-
ing that half of the IP addresses are reported on the same
day or before we observe the corresponding traffic. Over-
all, the mean observation delay for Spamhaus (3.2 days) is
higher than the one for Abuse.ch (-6.9 days) and Cybercrime
(-27.1 days), hence, Spamhaus is better-suited for prompt
actions against C&C servers. Cybercrime, however, is re-
porting IP addresses with a substantial lag. These results
are in accordance with the reaction time results of the black-
list evaluation study presented in [22].

3.4 C&C and Peers Lifetime
Another key temporal aspect of botnets is the lifetime of

the different botnet elements. In this study, the lifetime of
the C&C servers and bots is obtained from the monitored
traffic between peers and C&C servers. The lifetime of a
C&C server is defined as the time difference between the
server first and last observed flow to any peer. The life-
time of a peer is defined as the period of time that has
passed between the peer first and last connection to any
C&C server. Figure 2c depicts the lifetime distributions of
C&C servers and peers. Both distributions feature a bi-
modal shape, where the first mode is less than one day and
the second mode is around 140 days, meaning that C&C
servers and peers are either very short or very long lived.
For instance, 50% of the peers lifetime is less than a week



Figure 3: Traffic direction and average packet
size computed every hour for the monitored C&C
servers. Point shapes represent the number of peers
contacted during the corresponding hour. Circles
mean less than 100 peers, squares are between 100
to 1000 peers and triangles stand for more than 1000
peers. Point colors indicate the cluster identified
with the Gaussian mixture model.

and 20% of them have a lifetime greater than 4 months. In-
tuitively the sampling rates used to capture the traffic (see
Table 2) is a bias against long-lived hosts. Section 4.2 also
reveals that C&C servers scanning the IP space is a main
cause for these short-lived peers.

The average C&C lifetime (i.e. 68 days) observed in this
study is fairly close to the average C&C uptime values re-
ported by Gañán et al. in [10]. Their study employs similar
C&C blacklists (Abuse.ch and Cybercrime trackers) but de-
fines server uptime as the period of time between the C&C
detection time and the time it is taken down. That ap-
proach relies only on the dates provided by the blacklists
and is thus orthogonal to our definition of C&C lifetime
which relies only on the network flows timestamps, but the
two approaches yield consistent results.

Summary: As reported in [22] using sandboxes, we
found significant delays between the time IP addresses are
blacklisted and the time we observe them in the traffic.
Therefore, bots are reaching C&C servers in an asynchronous
manner, and we cannot rely on the blacklisted dates to mon-
itor bots traffic. In the traffic we also observe two charac-
teristic lifetimes for bots and C&C servers, they are either
short or long-lived.

4. C&C ROLES
We pursue our analysis of botnets traffic by inspecting

two discriminative quantities that reveal the distinct actions
taken by C&C servers:

Average Packet Size (APS) is simply the mean packet
size for all flows sent or received by a C&C server. Formally,

the average packet size of a C&C server x is defined as:

APS(x) =
RXbyte(x) + TXbyte(x)

RXpkt(x) + TXpkt(x)

where RXbyte(x) and TXbyte(x) (resp. RXpkt and TXpkt)
are the number of received and transmitted bytes (resp.
packets) by the C&C server x. Traffic with large APS high-
lights data transfers, whereas small APS values are the ev-
idence of signaling traffic.

Traffic Direction (TD) reveals the course of bytes ex-
changed between C&C servers and peers. Namely, the traffic
direction of a server x is defined as:

TD(x) =
RXbyte(x)− TXbyte(x)

RXbyte(x) + TXbyte(x)
,

This metric ranges from 1 to -1. Values close to 1 mean that
data is sent from the peers to the server, whereas values close
to -1 mean that the data is sent from the server to the peers.

The hourly average packet size and traffic direction for
each C&C server observed in our dataset are displayed in
Figure 3. Each point in this figure represents one hour of
traffic for one C&C server. Inactivity periods are not dis-
played as the average packet size and traffic direction are
undefined if a server receives or sends no data.

Prominent clusters are visually identifiable in Figure 3.
For example, a large number of points are aggregated around
TD = −1 and APS > 300, this cluster emphasizes data
sent from the C&C servers to the peers, this could be ei-
ther commands or binary updates sent to the bots. Another
interesting group of points is the horizontal cluster along
APS = 40, which highlights signalling traffic between the
server and the peers that could be the botnets heart-beat
traffic. Because the visual identification of these clusters is
tedious and error-prone, we devise a systematic approach to
identify them and provide an interpretation for each identi-
fied cluster.

4.1 Roles Identification
The visual clusters of Figure 3 reveal different roles as-

sumed by the monitored C&C servers. We systematically
identify these roles using the two proposed metrics (average
packet size and traffic direction) and a Gaussian mixture
model. The collected traffic is split in 1-hour time bin, and
the two proposed metrics are computed for each C&C server,
hence we obtain a sequence of APS and TD values for each
server. These values are analyzed by means of a Gaussian
mixture model, meaning that each component (i.e. cluster)
is represented by a centroid and a full covariance matrix that
are determined with the Expectation-Maximization (EM)
algorithm [16].

A crucial parameter for the Gaussian mixture model is
the number of components present in the data. To correctly
set this parameter, we try the Gaussian mixture model with
different parameter values and find the one that best fits our
dataset. The quality of the resulting models is evaluated us-
ing the Bayesian Information Criterion (BIC). Models pro-
ducing low BIC statistics are preferred as they feature a
better data fitting. Figure 4 depicts the BIC values for var-
ious models with a distinct number of components. Models
with less than 6 components produce high BIC values com-
pared to those with a number of components ranging from
6 to 11. The best BIC score is obtained with 9 components,
nonetheless, the improvement over the models with 6 to 11



Figure 4: Identification of C&C roles: Evaluation of
the Gaussian mixture model with a different number
of components. The Bayesian Information Criterion
(BIC) is used to estimate the models fit. The dashed
line indicates the selected parameter.

components is negligible. The result with 6 components is
particularly attractive as it gives a satisfactory description
of the data while keeping the model fairly simple. Conse-
quently, we define 6 C&C roles based on these results.

Colors in Figure 3 highlight the different components iden-
tified by the Gaussian mixture model. Our interpretation of
these components is based on their centroid position, the
number of peers for each C&C server and port information
retrieved from the C&C traffic. The labels and interpreta-
tions of the 6 roles are as follows:

Scan: The component containing the largest number of
C&C servers is represented in Figure 3 by blue points. This
is a very dense component (see the probability density func-
tion in Figure 3), and the position of its centroid (TD =
−0.99 and APS = 23) exhibits peculiar traffic features. The
corresponding traffic is strongly asymmetric, indeed, pack-
ets are sent solely by C&C servers, and the traffic is exclu-
sively composed of packets with no payload. Furthermore,
we found that 94% of the C&C servers assigned to this com-
ponent contacted more than 1000 peers within one hour,
with the maximum observed value being 23113 peers in one
hour. Considering our monitoring sampling rate, these C&C
servers are undoubtedly contacting a very large number of
peers but not transferring data to them. These observa-
tions are strong evidences of probing traffic found in the re-
cruitment phase of botnet life-cycle, hence this component
hereafter refers to scanning activities. Investigating corre-
sponding traffic reveals that scanners are targeting a vast
number of services, but we found that a lot of the scans are
probing proxy servers (port 3128 and 8080).

Keepalive: The other component representing very small
packets is, on the contrary, spanning through various TD
values (see the yellow points in Figure 3). The centroid of
this component (TD = −0.16 and APS = 30) is close to a
null traffic direction, meaning that the traffic is equally sent
from servers and bots. This is typical of signaling traffic
employed by the keepalive (or heartbeat) mechanisms found
in the interaction phase of botnet life-cycle.

Interaction: The red component of Figure 3 also exhibits
balanced traffic direction, but the average packet size for
this component is notably higher. The centroid (TD = 0.15

and APS = 130) indicates that packets contain an average
payload around 100 bytes and this data is equally sent from
servers and peers using usually SSH or HTTP (port 22 and
80). This exchange of small messages is associated to the
interaction phase present in botnet life-cycle where servers
send commands and maintenance operations to peers.

Pull: The sparse cyan component on the top right hand
side of Figure 3 is the component with the highest TD val-
ues. Its centroid (TD = 0.40 and APS = 459) stands for
traffic composed of significantly large packets and is sent
primarily from peers to C&C servers. These observations
evoke servers retrieving sensitive data from infected hosts
which is part of the attack execution phase of botnet life-
cycle. Traffic corresponding to this component is exclusively
sent through HTTPS (port 443). Hence, these connections
are encrypted and usually able to pass through firewalls.

Push: The other component standing for data transfer
is the magenta component of Figure 3, located close to the
left-top corner (centroid, TD = −0.92 and APS = 507).
Here the data is transferred from the servers to the peers,
and the wide range of APS values observed in this compo-
nent suggests that servers send both small and very large
files. Assuming the regular Ethernet maximum transmissi-
ble unit (MTU) of 1500 bytes and empty TCP acknowledg-
ment packets (20 bytes), points around APS = 1500+20

2
=

760 reveal maximum-size packets sent from servers to peers.
This role can be observed in both the recruitment and in-
teraction phases of botnet life-cycle, for example in the case
of new infections or binary updates. The port information
of corresponding packets indicates that this traffic is solely
sent on port 80.

Mix: The last component identified by the mixture model,
green on Figure 3 is located at the intersection of the pull,
push, interaction and scan components (centroid TD = −0.81
and APS = 361). The role underlying this component is un-
clear as it seems to be a mixture of the different roles. The
corresponding traffic, however, is apparently composed of
SIP packets (destination port 5060). Further investigations
indicate that this results is biased by a few large SIP scans
and the rest of the points in this component stand for various
types of traffic.

4.2 C&C Role-based Clustering
The six roles described above reflects hourly activities of

C&C servers, we now investigate the enrollment of a sin-
gle server in different roles and identify servers with similar
role changes over time. We devise a hierarchical clustering
technique to group C&C servers playing similar roles and
uncover common patterns across different servers.

The various roles associated to a server are summarized
in a 6-dimensional feature vector where each dimension rep-
resents the ratio of time spent for a certain role. Thereby,
all dimensions range in [0, 1], 0 means that the server never
played the corresponding role and 1 means that we observed
the server playing only the corresponding role. Each server
behavior is thus described by a 6-dimensional vector and
the dissimilarity of servers is measured using the Euclidean
distance. The proposed approach is an agglomerative hier-
archical method that sets apart servers in their own cluster
then recursively merges similar clusters as long as the deter-
mined linkage criterion is satisfied. Namely, we implement
the Ward’s minimum variance criterion to control clusters
coherence at each merging step. Figure 5 depicts for each



Table 3: Results of the C&C role-based hierarchical clustering. The eight partitions are listed along with
the number of corresponding C&C servers, the average total number of unique peers per C&C, the average
observed time in hours, and the ratio of played roles. Each mean value is reported with the corresponding
standard deviation.

#C&C #peers #hours scan keepalive pull push mix interaction
Partition 1 113113113 2481.58± 7378.05 6.49± 19.206.49± 19.206.49± 19.20 1.00± 0.011.00± 0.011.00± 0.01 0.00± 0.01 - - - -
Partition 2 5 176.00± 145.05 40.40± 83.16 0.02± 0.04 0.98± 0.040.98± 0.040.98± 0.04 - - - -
Partition 3 7 18855.71± 33010.8018855.71± 33010.8018855.71± 33010.80 57.14± 135.84 0.50± 0.050.50± 0.050.50± 0.05 0.47± 0.040.47± 0.040.47± 0.04 - - - 0.03± 0.08
Partition 4 8 8795.62± 13107.75 11.00± 10.36 0.73± 0.070.73± 0.070.73± 0.07 0.19± 0.12 - 0.02± 0.06 0.05± 0.12 0.01± 0.02
Partition 5 5 8915.00± 12093.26 485.80± 534.32485.80± 534.32485.80± 534.32 0.05± 0.11 - - 0.89± 0.120.89± 0.120.89± 0.12 0.05± 0.05 -
Partition 6 4 13998.00± 11988.52 8.00± 4.97 - - 0.06± 0.07 0.08± 0.10 0.86± 0.180.86± 0.180.86± 0.18 -
Partition 7 3 596.00± 995.93 19.67± 32.33 - - 0.95± 0.090.95± 0.090.95± 0.09 - 0.02± 0.04 0.03± 0.05
Partition 8 4 235.00± 329.67 93.25± 143.75 0.02± 0.03 0.02± 0.04 0.14± 0.24 - 0.00± 0.01 0.82± 0.230.82± 0.230.82± 0.23

Figure 5: Role-based C&C hierarchical clustering:
Cluster distance exhibit the coherence of partitions
at different agglomeration levels. The dashed line
indicates the selected threshold.

merging step the clusters distance in terms of the Ward’s
objective function. Lower cluster distance values emphasize
a better partitioning of the C&C servers and the knee ob-
served for 8 partitions represents the best trade off for a low
number of coherent partitions.

Each identified partition exposes a set of roles that are
commonly played by groups of C&C servers. The partitions
are presented in Table 3 along with the roles, the number of
C&C servers, and the number of peers they represent.

Partition 1: The largest partition in terms of number of
C&C servers contains hosts exclusively enrolled in scanning
activities. The average observation time for these servers
is particularly short (6.49 hours) meaning that servers are
performing a single scanning activity then are idle. Inter-
estingly, most of these scans have a limited scope (average
of 2481 peers) and seems to target specific hosts as only 1
of the 113 servers is reported by our Honeypot and none are
identified in OpenBL.

Partition 2: This partition groups servers that are mainly
associated to the keepalive role. These servers feature inter-
mittent communications with a low number of peers. Fig-
ure 6a depicts the number of bytes and peers over time for
a server assigned to this partition. Although constantly re-
ported by Spamhaus over three months, we found in cap-
tured traffic that this server is sparingly communicating with
a few peers. Notice that this type of traffic is particularly
difficult to monitor in backbone networks due the employed
sampling rates.

Partition 3: The servers identified in this partition are
involved in large scale scans and 4 out of the 7 servers are
also reported by OpenBL or the Honeypot blacklists. This
partition includes the server with the maximum number of
unique peers over the monitoring time period (i.e. 83812
unique peers) which is depicted in Figure 6b. The scans
initiated by this server are observed in the traffic and re-
ported by the Honeypot three months before it is reported
as a C&C server by the blacklists. Meaning that this host
was compromised several months before being included in
the C&C infrastructure. Figure 6c illustrates the activity
of another server from partition 3, which is on the contrary
probing hosts just after being reported by Spamhaus. This
suggests that the server was not taken down, but instead
the attackers have changed the function of this server after
being detected by Spamhaus. Although servers in this parti-
tion are assigned to both scan and keepalive roles, we found
that in this partition the two roles always appear consecu-
tively and the scans responses that fall in the next time bin
are misclassified as keepalive.

Partition 4: This partition is composed of scanners shar-
ing features with those from Partition 1, their lifetime is par-
ticularly short and their number of peers can be significant,
but differ in the other roles played. Servers in partition 4
are occasionally involved in other roles, we however found
no common patterns in the sequence of roles played by these
servers.

Partition 5: Servers in partition 5 are distinguished by
their very long lifetime and are mainly assigned to the push
role, meaning that they send data to peers. We also found
that 3 out of these 5 servers are reported by the Phishtank
website, hence evincing the threat of transferred binaries.
The inspection of the mix roles intermittently observed with
these servers reveals that, in some cases, peers are also send-
ing data to the servers. The average number of peers for
this partition is significantly affected by one server involved
in large scanning activities, the average number of unique
peers (1949 peers) for other servers is significantly lower.

Partition 6: The few servers primarily classified with the
mix role are clustered in partition 6. Figure 6d depicts the
activity of the prominent server found in this partition. The
three observed peaks are exactly one week apart from each
other, and the corresponding traffic consists only of UDP
packets (port 5060, SIP) sent from the server (TD > 0.99).
Furthermore, the large number of peers, 26179 unique peers
in total and the average payload size (APS = 220) suggests
that this server is also scanning the IP address space, but
with UDP packets carrying a certain payload data.

Partition 7: This partition contains servers retrieving



(a) Example of C&C server for partition 2 (Keepalive) (b) Example of C&C server for partition 3 (Scan)

(c) Example of C&C server for partition 3 (Scan) (d) Example of C&C server for partition 6 (Mix)

(e) Example of C&C server for partition 7 (Pull) (f) Example of C&C server for partition 7 (Pull)

(g) Example of C&C server for partition 8 (Interaction)(h) Example of C&C server for partition 8 (Interaction)

Figure 6: Examples of C&C activities. In each figure, points on the top three lines represent the time and
blacklists when the server has been reported. The blue and green plots respectively indicate the number of
transmitted and received bytes and the number of contacted peers. Both metrics are given for one hour time
bins. The six bottom lines depicts the roles assigned to the server.



(a) Spatial overlap for non-scanning servers, i.e. Push, Pull,
Interaction, Keepalive roles.

(b) Spatial overlap for servers involved in scanning activities,
i.e. Scan role.

Figure 7: Pairwise comparisons of C&C servers in terms of spatial overlap. Non-scanning C&C roles (a) and
scan role (b) are handled separately.

data from peers (i.e. pull role). The number of peers per
hour for these servers is fairly low (see Figure 6e and 6f).
Nevertheless, one of these servers accounts for a total of 1745
unique peers over the entire monitoring period (see Figure
6e). This server is continually receiving data from distinct
peers over three months in the form of HTTPS traffic and is
intermittently interacting with some hosts. The two other
servers have a very short lifetime as all their peers are syn-
chronously contacting the server within the same one hour
time bin (see Figure 6f).

Partition 8: Servers mainly labelled with the interaction
role are clustered in Partition 8. These servers usually fea-
ture a low number of peers but are active for an extended
period of time. Figure 6g exhibits the activity of one of these
servers, the server is constantly active for a week and then
disappears. Other roles are usually played by these servers,
for example, Figure 6h depicts a server involved primarily
in interaction and keepalive roles.

Summary: Using simple metrics and a Gaussian mixture
model, C&C servers traffic is clustered into 6 distinct behav-
iors. These behaviors reveal the roles of servers in botnets
and are in accordance with previously reported botnet life-
cycles [27, 20]. We found that servers are usually involved in
a single role and the contacts with bots can span over long
periods of time in an asynchronous fashion (e.g. Figure 6e
and 6h).

5. SPATIAL OVERLAP
C&C servers maintained by the same botmaster are po-

tentially contacting common peers over time as one server
may be replaced or share its load. In our dataset this results
in servers with common peers, but only for servers that are
not scanning the IP space. Scanners inherently contact a
large number of hosts but these peers are not necessarily
infected, thus cannot account for botnet members. Conse-
quently, we investigate peers overlap, hereafter referred as

spatial overlap, for different servers while they are not in-
volved in scanning activities.

Let Px and Py be the set of peers contacted by server x
and y while they are neither assigned to the scan or mix
roles, then their spatial overlap is defined as:

s(Px, Py) =
|Px ∩ Py|

min(|Px|, |Px|)
,

where |A| is the cardinality of A, and A∩B is the intersection
of the two sets. The spatial overlap ranges in [0,1], 0 means
that the two servers have no peers in common, and 1 means
that all peers of one server are a subset of the other server
peers.

5.1 Non-scanning C&C
Figure 7a illustrates the spatial overlap computed pairwise

for peers of non-scanning C&C servers, i.e., peers contacted
when servers roles are classified push, pull, interaction or
keepalive. If a server is involved in both scanning and non-
scanning activities then only its peers from non-scanning
activities are taken into account. The two prominent clus-
ters at the top-left corner of Figure 7a exhibit two groups of
servers with common peers.

The largest group contains 5 C&C servers with an average
spatial overlap s̄ = 0.37. C&C server 1 has a central role in
this cluster as its spatial overlap with other servers is signifi-
cantly high. We found that peers usually contact this server
and a different one on the same day. For instance, 82%
of common peers for server 1 and 2 are observed for both
servers on the same day. Therefore, the number of unique
peers for server 1 during non-scanning activities (8758 peers)
is fairly higher than the numbers for other servers (average
of 2185 peers). Servers 0, 1, 2, and 4 are similarly assigned to
the push role, consequently, the role-based clustering of Sec-
tion 4.2 classified these four servers in partition 5. Server 3,
however, is primarily retrieving data from peers (see Figure
6e), thus exhibiting a complementary behavior to the one



observed for the other servers. The apparent spatial overlap
between these servers and their complementary roles high-
lights the close association of these servers.

The other group is composed of server 5 and 6 (Figure
7a), the activity of these servers is also depicted in Figure
6h and 6g, respectively. Server 5 is active during most of
the measurement period whereas server 6 is only active for
a week in December 2014. This week is of particular interest
as no packet from server 5 is observed at these dates, sug-
gesting that the server was unreachable. Thereby, server 5
operations seem to be relayed to server 6 during this period
of time. Along with the spatial overlap, the port informa-
tion from corresponding traffic also strengthen this evidence,
96% and 99% of the packets observed for, respectively, server
5 and 6 are transmitted on port 22 which is an uncommon
port in the analyzed dataset.

5.2 Scanning C&C
The spatial overlap of servers involved in scanning activ-

ities does not provide direct insights into the C&C infras-
tructure but allows to better understand the scope of scans
performed by botmasters.

Figure 7b depicts the spatial overlap for peers of C&C
servers contacted during scanning activities. Notice that
servers are ordered by similarities thus the indices in Figure
7a and 7b are unrelated. Servers labelled from 0 to 8 in
Figure 7b have significant overlaps with all other servers
indicating that these are very large scans that encompass
a large fraction of the monitored IP space. The average
number of unique peers for these servers is 39504. Servers 9
to 20 have a much lower average number of peers (i.e. 8546
peers). Nonetheless, their overlaps with all other servers is
also noticeable, meaning that these servers are also scanning
the entire monitored IP space but with a lower intensity.
The rest of the servers, on the other hand, exhibit really low
spatial overlap among themselves. These observations, as
the one made for partition 1 in Section 4.2, illustrate that
most of the scans have a very limited scope and probably
targets specific sets of hosts.

Summary: Based on the roles identified in Section 4
the monitored spatial overlap helps to understand C&C in-
frastructures. It permits to effectively distinguish bots con-
tacted by several C&C servers while ignoring peers probed
during scanning activities. The spatial analysis of peers dur-
ing scanning activities, on the other hand, provides details
on the scope of scans.

6. TEMPORAL CORRELATION
Previous sections mainly focus on C&C traffic character-

istics and spatial distribution of peers, we now investigate
temporal aspects of C&C servers. The goal here is to identify
servers that are synchronously operating, hence governed by
the same entity. To find these synchronous activities we
study the temporal correlation of C&C servers traffic.

We compute, for each C&C server, a signal compiling the
number of bytes sent and received per hour (similar to the
blue plots of Figure 6). All servers are compared pairwise
with the following two-step method:

1. We perform a Pearson’s chi-square test to check if the
signals from servers x and y are statistically indepen-
dent. The null hypothesis is that the two signals are
uncorrelated and the test is done with a 95% level of

Figure 8: Temporal correlation of C&C servers, The
node labels, N0 to N4, reflect the indices of the ma-
trix in Figure 7a. Edges weight are indicated by the
width of edges.

confidence. If the null hypothesis is rejected, meaning
that the signals are indeed dependent variables, then
we compute the correlation coefficient for the two sig-
nals, ρx,y. Nonetheless, as servers have disparate activ-
ity periods, this correlation coefficient may be mislead-
ing in certain cases. As shown in Figure 2c, duration of
traffic observed for each server varies from a few hours
to several months. Comparing two servers activities
that are completely disjoint in time as little meaning,
therefore, in addition to the correlation coefficient we
also consider the temporal overlap of servers activities.

2. We provide a second test to check if servers share ac-
tivities in time. Let Tx and Ty be the two sets of hourly
time bins where servers x and y are active (i.e. receiv-
ing or transmitting traffic), then the relative common
activity of these servers is defined as:

rca(Tx, Ty) =
Tx ∩ Ty

max(Tx, Ty)
.

If rca ≥ 0.5 then the two servers are mostly active
at the same time, and the computed correlation coeffi-
cient ρx,y exhibits their interdependence. Otherwise, if
rca < 0.5, the two servers are mostly asynchronous and
we consider these two servers activities to be related
only if the corresponding correlation coefficient ρx,y
is higher than a confidence threshold. In our experi-
ments, we arbitrarily set this threshold to ρx,y > 0.5,
thus pairs of servers that pass the independence test
but fail this test (i.e. rca < 0.5 and ρx,y < 0.5) are
said uncorrelated.

Pairs of servers that pass both tests are represented in
a graph where nodes stand for servers, and two correlated
servers, x and y, are connected by edges weighted with the
corresponding correlation coefficient, ρx,y. Dense connected
components in this graph indicate sets of synchronously op-
erated C&C servers.

Figure 8 depicts the graph of correlated servers obtained
with our dataset. The largest component is composed of
the same servers as the prominent cluster identified with
the spatial overlap in Section 5.1. Therefore, these servers
exhibit both spatial overlap and temporal correlation which



reinforces evidences of the common management of these
servers.

The other connected components from Figure 8 consist
only of a pair of strongly correlated nodes (i.e. ρ > 0.9).
All these nodes are primarily assigned to the scan role and
are active only for a few hours. For example, both nodes
S111 and S112 are only active during the same two hours,
their spatial overlap is equal to 0 but both servers are tar-
geting the same service (TCP port 80). The three pairs of
nodes manifest the same synergy that we attribute to coor-
dinated scans and reveals the common operations executed
by several servers.

Summary: Spatial and Temporal correlations permit to
identify the same C&C infrastructure composed of 5 servers.
Synchronized scans are also emphasized with the temporal
correlation method proposed in this section. Similarly to the
observations of Section 4.2, we observe here a limited num-
ber of synchronized servers, these asynchronous communi-
cations can be substantially prejudicial for botnet detection
methods based on bots’ synchronous behavior [14].

7. RELATED WORK
Botnets have received a lot of attention from the research

community, and have been studied from different perspec-
tives. Research on bot and C&C channel detection has been
particularly active. Several studies detect botnet communi-
cations by looking at peculiar usages of conventional proto-
cols. IRC [25, 34, 13] and HTTP [23, 6] are typical examples
of such protocols employed by early botnets. Researchers
have also proposed more general approaches that rely ei-
ther on fundamental characteristics of botnet traffic, or by
relating datasets of different natures. For example, some
works identify botnets through their periodic communica-
tions [2] or typical behaviors [35, 24, 11, 15, 39]. Others
are investigating multiple datasets, for example, host and
network level information [37, 28], Honeypots [26] or DNS
traffic [18, 36]. Most of these techniques are able to identify
a wide variety of botnets as they make no assumption on
the communication protocol, hence, are also effective if bot-
nets employ custom or encrypted protocols. The clustering
methods employed in previous work, however, are particu-
larly difficult to implement in the case of backbone networks.
For instance, Botminer [11] relies on deep packet inspection
and CoCoSpot [9] requires non-sampled traffic which is un-
practical for our study case.

We refer the reader to [27, 20] for comprehensive surveys
on botnet detection. Detection techniques are complemen-
tary to the analysis presented in this paper, as our analysis
relies on C&C blacklists summarizing results from botnet
detection algorithms.

Botnet infiltration is an effective approach to monitor
prominent botnets and measure their distinctive character-
istics. Therefore, by taking control of C&C servers, re-
searchers have investigated the operations of the Torpig bot-
net [30]. Controlled infection in sandbox [19] or bot simula-
tion [33] also permits to infiltrate botnets and obtain rele-
vant information on them. These approaches are appropri-
ate to inspect specific botnets but are difficult to generalize
to any botnet.

Closer to the work presented in this paper, several studies
rely on blacklists and external datasets to infer the condi-
tion of botnets. For example, with blacklists reporting Zeus
C&C servers and by scanning the reported hosts, researchers

have derived the Zeus C&C lifetime and factors affecting
the longevity of the Zeus infrastructure [10]. An evaluation
study of blacklists [22] classifies reported entries as parked
domains, unregistered domains, and sinkholes, using DNS
records and sandbox results. A recent study is also moni-
toring Internet traffic to classify botnets based on their size,
and to uncover botnets collaborations [5].

Our study of botnet traffic supplements the vast literature
on botnets by proposing generic tools to monitor the differ-
ent roles played by C&C servers and their relationships.

8. CONCLUSIONS
This paper investigates different botnet families traffic col-

lected at Internet exchange points, backbone and edge net-
works. A clustering technique is devised to identify six dif-
ferent functions of C&C servers. Using these C&C roles, we
classify servers with similar behavior and found that servers
rarely perform multiple roles. We also proposed techniques
to effectively identify C&C servers with common bots and
servers that are synchronously activated. Our observations
with five months of traffic reveal a large amount of C&C
servers dedicated only to scans. This is particularly impor-
tant to take into account when inferring bots or estimating
the size of a botnet from traffic data. Although measuring
traffic at core routers can potentially expose a large fraction
of botnet resources, we found that in practice the significant
sampling rate imposed by the large amount of transmitted
traffic on backbone network complicate this type of analy-
sis and should be taken into consideration when designing
similar traffic analytical methods.
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