
RPKI Syncing: Delay in Relying Party
Synchronization

Khwaja Zubair Sediqi
Max Planck Institute for Informatics

Saarland University
Saarbrücken, Germany

zsediqi@mpi-inf.mpg.de

Romain Fontugne
IIJ Research Laboratory

Tokyo, Japan
romain@iij.ad.jp

Amreesh Phokeer
Internet Society

Port-Louis, Mauritius
phokeer@isoc.org

Massimiliano Stucchi
Glevia GmbH

Brüttisellen, Switzerland
stucchi@glevia.com

Massimo Candela
NTT Data

Barneveld, Netherlands
massimo@ntt.net

Anja Feldmann
Max Planck Institute for Informatics

Saarbrücken, Germany
anja@mpi-inf.mpg.de

Abstract—The Resource Public Key Infrastructure (RPKI) en-
hances routing security by providing cryptographically verifiable
objects containing the Autonomous System (AS) numbers autho-
rized to originate IP address ranges. Relying Party (RP) software
performs RPKI synchronization by downloading, validating, and
processing data from RPKI Publication Points (PPs) that are
then provided to the routers to decide on accepting or reject-
ing BGP announcements. While RPKI is gaining importance,
synchronization delays can compromise BGP reactivity, causing
ASes to accept outdated or invalid announcements and potentially
leading to service disruptions.

We study the causes of delay in RPKI synchronization by
examining the key characteristics of the RPKI system, such as
Route Origin Authorization (ROA) structures, RPKI operational
modes, certificate chains, and the networking delays to access
PPs. Our findings reveal that bundling multiple prefixes into
a single ROA reduces validation delays by up to threefold.
Depending on the ROA structure and publication infrastructure
of delegated Certificate Authorities (CAs), they can reduce RP
synchronization delays or inflate them by up to 90%. Some
regions worldwide observe delays of a few milliseconds and others
of several hundred milliseconds in accessing RPKI resources.
Every additional 100 milliseconds of Round Trip Time (RTT)
can delay the RP synchronization by up to 25 extra seconds.

Index Terms—RPKI, BGP, Synchronization, Delay, Security

I. INTRODUCTION

The Resource Public Key Infrastructure (RPKI) [1]–[3] is
designed to improve Border Gateway Protocol (BGP) secu-
rity by providing a cryptographically verifiable association
between the IP prefixes and Autonomous Systems (ASes) that
are authorized to advertise these prefixes. These associations
are recorded in Route Origin Authorization (ROA) objects and
are signed by a Certificate Authority (CA). Each of the five
Regional Internet Registries (RIRs) operates a Trust Anchor
(TA) and a Publication Point (PP) to host the RPKI objects.

Network operators use Relying Party (RP) software to
download the RPKI data from a globally distributed set of
Publication Points or repositories, cryptographically verify

the ROAs, and provide the Validated RoA Payloads (VRPs).
We refer to all these steps as the RPKI or Relying Party
synchronization process. The updated set of VRPs from the
RPKI synchronization process is then provided to the RPKI-
enabled BGP-speaking routers to help them filter out the
illegitimate routes originated by rogue ASes from incoming
BGP announcements.

Network operators have documented operational issues such
as long delays for changes in RPKI to take effect [4]–[6]. The
time it takes for an announcement to propagate globally in
BGP is fast [7]–[9]. However, changes in RPKI are slow and
might lead to scenarios where BGP accepts outdated or invalid
announcements, potentially leading to service disruptions.

RPKI delay has three main components: (1) the publication
delay, which is the time required for a change in RPKI data
to be publicly visible in Publication Points, (2) the synchro-
nization delay, which is the time Relying Party software will
take to fetch, validate and update its list of Validated ROA
Payloads, and (3) the BGP refresh interval, which is the time
interval at which RPKI-enabled routers refresh their list of
VRPs perform Route Origin Validation (ROV) and update their
Forwarding Information Base (FIB) [1].

Fontugne et al. [10] analyzed the end-to-end delay by
observing the reaction time of BGP after changing ROA
information at the five RIRs. More precisely, they show that
the highest cause of delay between RPKI and BGP comes
from the synchronization of RP software but they provide little
details on why this step is slow.

The RP synchronization delay is composed of three main
elements: (1) RPKI data downloading time, (2) RPKI data
validation time, and (3) the time it takes to produce the list
of VRPs. The first part requires communication between RP
software and Publication Points.

As RPKI is gaining importance, and its adoption is growing
[11], the download and process time of RPs is also expected
to increase over time due to an increasing number of CAs,
ROAs, and PPs incurring more delays. The increasing fetch978-3-903176-74-4 ©2025 IFIP



time for retrieving a full snapshot of the RPKI tree may
hamper further deployment. In this paper, we study the
dynamics of fetching the RPKI tree from the PP hierarchy,
examine the cryptographic verification of ROAs, and propose
optimization techniques to enhance the RP synchronization
delay. Our contributions are as follows:
In-depth analysis of RPKI synchronization delay: We
analyze each TA’s structure of publishing ROAs and the
impact of mode of operation (hosted vs delegated) in
RPKI data publication. Our results show that consolidating
several prefixes of an AS into a single ROA can reduce the
cryptographic verification time by a factor of up to three.
While the fetching and validation of ROAs are the main
delay factors in RP synchronization, we further identify
that 7% of VRPs in delegated PPs accounts for up to 90%
synchronization delays for one of the TAs (see Section IV).

Large-scale latency measurement: We perform large-
scale active measurements using more than 700 RIPE Atlas
anchors from 91 countries around the globe to identify the
accessing delay to RPKI PPs. Most PPs are accessible within
50 milliseconds of Round Trip Time (RTT) from their primary
serving regions but require hundreds of milliseconds from
other regions. Accessing RPKI PPs using IPv4 or IPv6 has a
similar delay, but the RPKI Resource Delta Protocol (RRDP)
deployment of PPs is accessible faster than PPs using the
rsync protocol. We show that for every additional RTT of
100 milliseconds, RPKI synchronization increases up to 25
seconds (see Section V).
We identify the root causes of RP synchronization delay and
discuss possible optimization techniques for PP maintainers,
RP software developers, and RP synchronization modes of
operation.

II. BACKGROUND/RPKI OVERVIEW

The Resource Public Key Infrastructure [3] is a security
system that uses a chain of X.509 certificates to validate the
authenticity of routing announcements made by ASes on the
Internet. RPKI aims to prevent malicious or accidental routing
incidents due to prefix mis-origination, i.e., when an attacker
falsely advertises itself as a specific IP address block holder,
which can result in redirecting or blackholing Internet traffic
intended for the legitimate holder. However, RPKI does not
mitigate all BGP attacks (e.g., path injection). Figure 7 in
the Appendix A presents an overview of the various building
blocks of the RPKI system that we explain through the action
statements below.

Certificates: RPKI follows the IANA prefix allocation
hierarchy. Each RIR operates a self-signed certificate, called
a Trust Anchor, for the Internet resources they manage.

When RIRs allocate resources to Local Internet Registries
(LIRs) e.g., an Internet Service Provider (ISP) or to National
Internet Registries (NIRs) like TWNIC or NIC.br, the TA
issues a child certificate with the member resources [Action
1 ]. This certificate (and the associated private key) is used to

create special attestations called Route Origin Authorizations.

Modes of operation: NIRs or LIRs that have been issued
resource certificates can choose between two modes of opera-
tion: (1) The Hosted mode, where their RPKI environment
(RPKI objects, private key material, and PP) is managed
entirely by the RIR. This is currently the most used mode of
operation, or (2) the Delegated mode, where an LIR operates
its own RPKI environment including the management of a PP.
Some RIRs provide Publication as a Service (PaaS), where
delegated CAs can publish their objects in their RIR’s PP.

Route Origin Authorization (ROA): Once the members
are issued a certificate that proves their holdership of allocated
resources, they can issue a signed attestation called a ROA
to authorize an AS to advertise their prefixes [Action 2 ].
The ROAs are then published in repositories called Publication
Points, which are operated by either the RIR or by the resource
holder itself in the case of the delegated mode [Action 3 ].

Publication Points: Each Certificate Authority in the RPKI
hierarchy needs to publish their objects (certificates, ROAs,
manifest files, and Certificate Revocation Lists (CRLs)) in
a publicly accessible repository, called a Publication Point.
Anyone can operate a PP, but in practice, each RIR operates
a PP to publish the RPKI objects of their own CA and those
of the child CAs (if the latter is operating in ‘hosted mode’).
These objects are then fetched using either the RRDP[12] or
rsync protocol and validated by Relying Party software.

Route Origin Validation (ROV): [Action 4 ] RPs period-
ically fetch and validate the RPKI objects from the PPs, and
they generate a set of VRPs. VRPs contain a set of prefixes
(with prefix and max length) and the associated authorized
ASes. Validation follows a top-down approach, starting with
the TAs. RP software usually comes bundled with the RIR’s
Trust Anchor Locators (TALs), where each TAL contains the
root certificate’s Uniform Resource Identifier (URI). In the
case of delegated mode, the parent CA will point to the child
CA’s repository to build the chain of trust, allowing the RPs
to fetch and validate the RPKI objects from the delegated
CAs’ PPs [Action 5 ]. Using the rpki-rtr protocol, the list of
VRPs is periodically pushed to the RPKI-enabled routers [13].
Using this information, incoming routing announcements in
the Routing Information Base (RIB) are tagged as either Valid,
Invalid or Unknown. Based on the routing policy, routers
will accept or drop incoming routing announcements before
sending them to their Forwarding Information Base (FIB)
[Action 6 ].

III. RELATED WORK

Osterweil et al. [14] simulated a “fully deployed” RPKI and
showed that it would take between 15 to 30 days to synchro-
nize the local caches at RPs around the world. The number of
objects was calculated based on RIRs’ allocation trends with a
one-to-one mapping between allocation and a ROA. However,
since 2012, there have been a few improvements to RPKI,
namely the standardization of the RPKI Delta Protocol [12],
the use of Content Delivery Networks (CDNs) for repository
hosting [15], bundling ROAs and other network optimizations
that helped reduce the fetching time.



Measuring RPs in the wild, Kristoff et al. [16] looked at the
timeliness of RPs which is based on their configured refresh
time intervals that would determine how many times an RP
would synchronize with the PP. Routinator, a RP software, has
a refresh interval of 10min [17]. For rpki-client, another RP
software, the manual page states an hourly run using crontab
[18]. To date, there are no defined standards on the refresh
time interval and each RP comes with its own default time
settings.

Hlavacek et al. [19] analyzed the retrieval interval, the
cache management algorithms and the frequency at which the
different RPs refresh the cache by contacting the publication
server. They also looked at the reachability of PPs by varying
network configurations such as enabling/disabling DNSSEC.
Hlavacek et al. [20] proposed an attack scenario whereby an
attacker can inject packet loss at specific time intervals and
stall RPs by creating very long delegation chains. This would
prevent RPs from fetching ROAs and other RPKI data from
PPs, forcing the expiry of cached objects. While their attack
scenario is hypothetical, increasing the depth of certificates
impacts the synchronization time, as we see in Section IV-D.
The possibility for malicious repositories that could stall the
RP synchronization process was studied by Hlavacek et al.
[21], and the sort-and-limit algorithm is proposed to prevent
attacks and repository failures. van Hove et al. [22] studied
a threat model where the attacker controls a CA and PP, and
discovered that attackers might have the potential to disrupt
RP software.

RPKI MIRO [23] was introduced to monitor and inspect
RPKI objects. Researchers investigated RPKI usage by assess-
ing the deployment of RPKI and ROV [24]–[28] and explored
the RP software vulnerabilities, security concerns, and RFC
compliance [29]–[31].

To reduce RP synchronization time Li et al. [32] proposed
a bit-map encoding scheme to compress the total size of ROA
payloads in RRDP by 26.6%. Using a 10 Mbps link, they
showed a reduction of 41.3% for the currently used max-
length approach and 50.4% for the minimal ROA approach
[33]. While the compression algorithm proposed can reduce
validation time, it remains theoretical as it requires adoption
by all RPs, which is impractical.

The closest study to ours is by Fontugne et al. [10]
which looked at the end-to-end delay between the creation
or removal of a ROA and the corresponding changes observed
in BGP. They announced prefixes assigned from all five RIRs
and created/deleted ROAs to change the RPKI status of the
announcements. Delay metrics were recorded at several steps
of the RPKI lifecycle, namely at user creation, ROA signing,
publication, and BGP update. They found that RIRs usually
publish new RPKI information within five minutes, except
APNIC, which is ten minutes slower.

However, their work does not investigate the detailed causes
for RP’s synchronization delay. We address this gap by pro-
viding an in-depth analysis of the delay factors in the RP
synchronization process.

IV. MEASURING RP SYNCHRONIZATION DELAY

RP synchronization delay can occur in several parts of
the process, including network delay of downloading data
from RPKI Publication Points, cryptographic verification at
the client by following the certificate chain, and production
of VRPs. In this section, we thoroughly analyze delay factors
that impact the RPKI validation process and try to identify
potential delay areas for optimization.

A. Experimental Setup

To measure the Relying Party software synchronization
delay, we use dedicated hardware located in Germany, running
Debian 11 with an AMD 8-core processor, maximum speed
2.1GHz each, 16 threads, 31 GiB of RAM, and 2.0 GiB of
Swap memory. We connect the machine directly to the Internet
with no firewall in between via one Gbps link. We performed a
similar analysis from a second vantage point in Japan using a
dedicated Virtual Machine (VM) and obtained similar results.
In this paper, we present results of dedicated hardware only,
which is less biased by the system’s underlying infrastructure
compared to the VM.

Relying Party Software: We use rpki-client version 9.3
[34], and Routinator version 0.14.0 [35] as the actively
maintained, popular in the RPKI community, and commonly
used RP software in practice [16]. Using two different RP
implementations, we identify implementation-specific delays
and separate them from RPKI infrastructure-caused delays.
Our goal is to understand the bottlenecks in provisioning RPKI
objects and their impact on delay.

We use the default configuration for both RP software to
produce a list of VRPs and always run only one instance of
one software at a time during the experiment to avoid any
competition in terms of network and CPU resources.

In practice, network operators start by pulling and validating
the entire RPKI tree and then perform synchronization of
local RPKI cached data by fetching updates only. We refer
to the first case as the Cold cache and the second case as the
Warm cache. To thoroughly analyze the RPKI synchronization
delay, we also introduce a third case we call Hot cache RPKI
synchronization. We define the Cold, Warm, and Hot modes
for RPKI cached data as follows:

Cold cache: We manually delete all the RPKI cached ob-
jects from our system and then start the RPKI synchronization
with an empty cache. Clearing the cache before running the
RP software allows us to measure the entire time RPs take
to fetch data, process it, and produce the list of VRPs. For
RP operations in Cold mode, we select the one-hour interval
aligned with rpki-client man pages [18].

Warm cache: RPs reuse the previously downloaded RPKI
data. However, they still have to synchronize with RPKI
repositories to update to the latest data, run validation, and
produce the VRPs. The cached RPKI data in our experiment
is around 10 minutes old, aligned with Routinator’s default
policy [17], for each Warm mode RP synchronization.

Hot cache: RPs process the cached data only and do not
download any data from RPKI repositories. While Hot mode is



not used for operational settings, we use this mode to exclude
the network delay and provide the exact delay required to
perform cryptographic verification or validation of RPKI data
and produce the final output set of VRPs.

As we report on timing values, we consider the impact of
CPU cache on our analysis. A full or partial existence of
RPKI data in RAM, swap/virtual memory, or buffer memory,
which we refer to collectively as the CPU cache memory,
may influence our analysis. To handle the CPU cache memory
impact, for each of the RP operation modes, we consider
two states of CPU cache retained or True where a ‘(T)’ is
appended to the name of RP software like Routinator (T)
or rpki-client (T), and the CPU cache cleaned or False with
‘(F)’ appended to RP name, for example, Routinator (F) and
rpki-client (F) in the rest of this paper. For each mode of
RPKI cache in Cold, Warm, and Hot, and every status of
CPU cache being True or False, we perform 100 iterations
of each RP software synchronization for 15 consecutive days.
We run the same configuration for the two RPs as close in
time as possible, but only one instance at a time. We collect
each experiment’s detailed logs and output, constituting this
section’s main dataset.

B. Synchronization Delay of Relying Party Software

We define the RP synchronization delay as the time from
the start to the end of one RPKI validation process where RP
software contacts RPKI Publication Points, downloads data,
performs cryptographic verification of data, and produces a
set of VRPs (excluding synchronization with the router via
RTR). The Hot RPKI cache mode does not have any network
involvement, and the RP synchronization delay reflects only
the time required to cryptographically verify the RPKI data
from the system’s local cache and produce VRPs. We use the
terms RP synchronization and RPKI validation interchange-
ably throughout this paper.

In Figure 1, Routinator has the highest synchronization
delay in Cold mode with a median value of around 490
seconds for both cases of CPU cache True and False. For rpki-
client (T) and (F) in Cold mode, the median delay is around
190 seconds. Using Routinator in Cold mode has a major
page fault rate of around 455k. When RP software accesses a
memory page that is not in physical RAM, a major page fault
occurs, and the operating system then fetches the page from
the disk. Because accessing disk storage is slower than RAM,
major page faults create delays for Routinator. For rpki-client,
we identify zero to 20 major page faults. In Cold mode, neither
RP is sensitive to CPU cache status as all the data should be
downloaded from the Internet.

For the Warm mode, Routinator (T) has a median RP
synchronization delay of around 200 seconds and 210 seconds
when the CPU cache is False. rpki-client (T) and (F) have
a median value of around 140 seconds and 240 seconds,
respectively. We believe the increase in synchronization delay
for rpki-client (F) is due to high read from the file system,
showing rpki-client is more sensitive to the CPU cache than
Routinator. As expected, the Warm mode has a lower RP

Cold Warm Hot

200

400

600

800

R
P 

Sy
nc

hr
on

iz
at

io
n 

D
el

ay
 (S

ec
)

Routinator (T)
Routinator (F)
rpki-client (T)
rpki-client (F)

RPKI Cache

Fig. 1. Boxes show the RPs synchronization delay for Cold, Warm, and Hot
RPKI cache modes. The order of the boxes matches the legend.

synchronization delay compared to the Cold mode because
less data has to be downloaded.

We see the highest outlier of RP synchronization delay for
rpki-client in Cold mode because it has a default timeout
of 900 seconds to switch from RRDP to rsync protocol
[18]. We identify the rpki.cnnic.cn repository containing 1,218
VRPs (1,117 IPv4, 101 IPv6) registered for 173 ASes as the
problematic PP causing the highest outlier. To avoid delays
caused by outliers, skipping the problematic PPs, especially
when the local copy exists, might be an option. Stalling the
RPKI synchronization process by a PP is a vulnerability also
reported in other studies [22][36].

Routinator (T) and (F) have the lowest median delay of 40
and 50 seconds, respectively, in Hot mode. The rpki-client
(T) has a higher median delay of more than 100 seconds
and more than 200 seconds when the CPU cache is False
or rpki-client (F). The Hot mode indicates that Routinator has
a faster cryptographic verification of the RPKI data than rpki-
client. However, the rpki-client has a better synchronization
time when the network is involved in the RP synchronization
process. Cold mode is write-intensive, with nearly 4 million
write operations to the file system. Inversely, the Warm and
Hot modes are read-intensive, with more than 4 million read
operations for Routinator (F) and rpki-client (F) only when
the data is unavailable in the CPU cache.

We run the same set of experiments using a memory-
mapped file system for the RPKI data storage to understand
the potential impact of read and write to the disk file system
on RP synchronization. Using a memory-mapped file system
mitigates the impact of the system’s CPU cache and further
reduces the RP synchronization delay by up to 8%. This
is because the read/write from and to memory-mapped file
systems are faster than the disk-mapped file system.

For Routinator, the significant delay difference between Hot
mode and the other modes indicates that fetching RPKI data
from the Internet is the main contributor to synchronization
delay. In contrast, the rpki-client exhibits a different behavior
of taking more time to process the cryptographic verification
of ROAs during synchronization. The use of RPKI cache



is more efficient for Routinator, reducing synchronization
delay to nearly 200 seconds compared to not using cached
data, specifically in settings where a refresh occurs every 10
minutes. However, the RPKI cache has a few seconds of
improvement for the rpki-client only when the CPU cache is
retained. The rsync protocol implementations with rpki-client
using openrsync and Routinator using the system-provided
rsync might also contribute to variations in synchronization
delay in Cold mode [34], [35].

Routinator has the fastest cryptographic verification of RPKI
data and is more efficient in handling empty CPU cache status,
but suffers from a high number of page faults, causing the
highest RP synchronization for the software in Cold mode.
In contrast, rpki-client takes nearly twice as much time as
Routinator for the cryptographic verification of the data, but
has efficient network handling and lower synchronization
delay than Routinator in Cold mode with almost no page fault.
It is also more prone to the system’s CPU cache state. We think
combining Routinator’s fast cryptographic verification and ro-
bust handling of CPU cache with rpki-client’s efficient network
handling in an RP can significantly reduce RP synchronization,
and running them on a memory-mapped file system can even
further optimize the RPKI synchronization process.

Typically, Routinator runs as a daemon, and rpki-client runs
by cron, in Warm mode, and stores its cache state on disk; this
means these RPs will only run in Cold mode once after first
installation on a system, or after an explicit wipe of the on-disk
RPKI cache by an operator. In normal operations, and because
RPs typically run in Warm mode, rpki-client and Routinator
will have a very similar synchronization delay in day-to-day
performance.

C. Impact of ROA Composition

We want to understand whether the delay for cryptographic
verification of ROAs for all five RIRs is the same or different.
Measuring each RIR’s RPKI tree individually provides us with
a clearer picture of the performance bottlenecks at each RIR.
For this purpose, we measure the RP synchronization delay in
Hot cache mode for the entire RPKI tree of each RIR (i.e.,
the TA and all its delegated repositories). The Hot mode is
not biased by our machine’s location, as only the RPKI cached
data is analyzed, and network delay is not involved. Since each
TA’s RPKI tree maintains a vastly different number of ROAs
and VRPs, we normalize the measured delay per VRP and the
average number of VRPs per ROA.

Figure 2 (a) illustrates a scatter plot of the average number
of VRPs produced per second on the x-axis and the average
number of VRPs per ROA object on the y-axis for each RIR
using Routinator and rpki-client. The results show that the
RPKI tree of RIPE and APNIC has the fastest processing
time per VRP, more than 10k and 9k VRPs per second,
respectively, using Routinator or more than 3k using rpki-
client. The rest of the TAs have less than 3k VRPs per
second processing time using rpki-client and less than 6k using
Routinator. AFRINIC has the lowest number of 2.3k VRPs per
second using Routinator, and LACNIC has the lowest number

of 1.8K VRPs using rpki-client. Cryptographic verification of
ROAS for the same amount of VRPs from ARIN, LACNIC,
and AFRINIC RPKI tree requires at least twice as much time
as APNIC and RIPE using Routinator. The VRP production
rate, number of VRPs per second, and the difference between
Routinator and rpki-client are due to Routinator being fast in
Hot mode and even faster when the data amount is higher, as
shown for AFRINIC and ARIN. This difference between RIRs
is mainly explained by the bundling of multiple prefixes in a
single ROA object, a common practice for RIPE and APNIC
but not the other RIRs. ROAs from ARIN, AFRINIC, and
LACNIC RPKI trees produce, on average, around one VRP.
In contrast, the RIPE and APNIC RPKI tree ROAs contain,
on average, 3.6 and 5.6 VRPs. Consolidating several prefixes
for one authorized AS into a single ROA object reduces the
number of cryptographic operations required per VRP and,
hence, significantly reduces the delay observed for processing
RPKI data.

Figure 2 (b) displays the distribution of prefixes per AS
extracted from VRPs for each RIR. Around 60% to 85% of
ASes have more than one IP prefix per AS in each TA’s RPKI
tree. In the range of 10% to 18% of ASes have more than ten
prefixes per AS, with Amazon AS16509 having the highest
number of 10,879 IP prefixes in RPKI data.

All ASes with more than one prefix registered in RPKI are
candidates for bundling their multiple prefixes into a single
ROA object. We discuss the potential side-effects of bundling
in Section VI.

D. Impact of Certificate Chain Depth

In the RPKI, certificates are organized in a hierarchical
mode. The topmost certificates in RPKI are the RIRs’ Trust
Anchors (root certificates) (Depth 1). For different operational
reasons, RIRs can create intermediate child certificates to
manage their CA, AFRINIC and LACNIC use depth of 2,
and the rest of the RIRs use a depth of 3 for this purpose.
They also create certificates (member certificates) for or to
National Internet Registries or Local Internet Registries for
organizations to which resources are assigned (Depth 4). LIRs
and NIRs can issue End-Entity certificates (Depth 5), which
are used to sign ROAs. LIRs and NIRs can sub-allocate
resources, this adds another level to the depth of the certificate.

RP synchronization needs a new TCP connection to be
established for each Publication Point. This process involves
numerous handshakes, making it crucial to ensure fast down-
loads of RPKI snapshots or updates from these delegated CAs.
We study the impact of the depth of the certificate chain or
delegated Certificate Authorities on RP synchronization delay.
For this particular measurement, we use only Routinator as it is
not possible to measure CA depth using rpki-client. Routinator
has a configurable chain depth to mitigate certain denial-of-
service attacks [22] with a default CA depth value 32. We
use this feature Routinator to perform RPKI synchronization
in Cold mode with CA depths of 2 to 6 for each RIR’s RPKI
tree, as other depths contain no ROAs and 50 iterations at each
depth and for every RIR.



0 2K 4K 6K 8K 10K
VRPs/Second (Hot mode)

0

2

4

6

VR
Ps

/R
O

A 
O

bj
ec

t(a)

AFRINIC
APNIC
ARIN
LACNIC
RIPE

RP Software
Routinator
rpki-client

1 10 100 1K 10K
Prefix(es) per AS

0

0.25

0.5

0.75

1

CD
F

(b)

AFRINIC
APNIC
ARIN
LACNIC
RIPE

Fig. 2. For each RIR’s RPKI tree (a) shows the average rate of RPKI data
validation and (b) shows the distribution of IP prefix per AS.

0

100

200

300

400

Sy
nc

hr
on

iz
at

io
n 

D
el

ay
 

 in
 S

ec
on

ds

APNIC ARIN RIPE

≤3 ≤4 ≤5
 

0

60K

120K

180K

240K

300K

VR
Ps

≤3 ≤4 ≤5
 

≤3 ≤4 ≤5
 

Maximum Depth of Certificate Chain

Fig. 3. Impact of CA depth on TA’s RP synchronization delay (top plot) and
their contribution of VRPs (bottom plot) using Routinator in Cold mode.

In Figure 3 the x-axis shows the maximum depth of the
certificate chain of trust (i.e., a maximum depth of 4 includes
all levels up to 4). The y-axis represents the delay in seconds
(top subplot) and the number of VRPs (bottom subplot). We
show the RP synchronization delay for each CA depth for
APNIC, ARIN, and RIPE in the top subplot of Figure 3 and
the corresponding number of VRPs at each depth in the bottom
subplot. We exclude AFRINIC and LACNIC from this analysis
because they take less than 100 milliseconds, not affecting the
total delay of RP synchronization. Moreover, AFRINIC has
no CA depth, and LACNIC has only one additional depth
than TA, and only for the mentioned RIRs, we observe data
at a CA depth of 2. For APNIC, the number of VRPs are
increased from 119k at a CA depth of 3 to 137k at a CA
depth of 5, shown in the bottom subplot of Figure 3. However,
the CA depth impact on RP synchronization delay is minimal
for APNIC, with all depths having less than 100 seconds
of delay. The rpkica.twnic.tw PP at CA depths of 3 and
4, and rpki.sub.apnic.net PP causing outliers with increased
RP synchronization delay from 200 to nearly 400 seconds.
Delegated CAs of APNIC contribute 13% additional VRPs
and add only around 2% extra delay, which means they have
a positive impact and help RP software validate more data in
relatively less time.

The maximum certificate chain depth clearly impacts RP
synchronization delays for ARIN. We notice a median of 184
seconds RP synchronization delay at a CA depth of 3, which
increased to a median of 360 seconds at a depth of 4 and is
slightly higher at the CA depth of 5. Processing 7% of VRPs
from ARIN’s delegated CAs cause more than 90% delay for
the entire ARIN RPKI resources in Cold mode.

Moving deep from CA depth of 3 to 4 for RIPE CA depth,

the RP synchronization delay has medians of 304 and 305
seconds, which is in line with the slight increase of VRPs from
268k to 270k, as shown in the bottom subplot. However, the
delegated CAs at a depth of 5 that contributes nearly 320 VRPs
increase the RP synchronization from 304 to 330 seconds. This
means around 1% of delegated RPKI data causes up to 10%
additional delay for RIPE.

These delays reflect the fact that a small number of ROAs
from delegated CAs may inflate the delay observed for the
whole RPKI tree of a TA. While delegated CAs hosted on
cloud infrastructure positively impact the RP synchronization
for APNIC, a few specific delegated CAs cannot always serve
RPKI data using RRDP and cause RPs to hang for hundreds
of seconds on them, which can slow down the entire RP
synchronization process. Analyzing the RP synchronization
logs, we find that sometimes repositories cannot serve the
RPKI data using RRDP, they time out, and then fall back
to rsync. This timeout and fallback to rsync is the common
issue for those repositories creating outliers with high RP
synchronization.

RPs download and process delegated CA objects after the
initial delay incurred in fetching and processing TA data at the
top of the certificate chain. Any slowdown in the certificate
chain’s depth for delegated CAs can significantly prolong the
entire RPKI synchronization process. Therefore, the quick and
efficient operation of delegated CAs is even more important.
Maintainers of particular delegated CAs may take action to
ensure smooth and fast serving of RPKI data to avoid hanging
of RP synchronization process on their repositories. Fast
operation of delegated CAs is crucial in RPKI synchronization,
and even more in the future as their number may increase.



V. RPKI DELAY MEASUREMENT USING RTT

RPKI data contains nearly 560k small objects stored in dis-
tributed repositories or Publication Points worldwide. Down-
loading RPKI data requires exchanging around 140k pack-
ets between the RP software and RPKI Publication Points.
Therefore, understanding the Round Trip Time to access RPKI
resources or PPs from around the globe is crucial to the RP
synchronization delay.

A. Measurement Design and Data

We perform an active measurement using all the RIPE Atlas
anchors by running a series of TCP-based traceroutes toward
all the RPKI Publication Points for two weeks.

We use around 700 RIPE Atlas anchors located in 91
countries for our experiment because they are usually hosted in
data centers or in well-provisioned locations like universities.
Hence, the delay results observed from RIPE Atlas anchors
from a particular network are arguably a good approximation
of the delay experienced by Relying Party software in that
network for the RPKI synchronization process.

We use a list of 69 PP hostnames for both RRDP and
rsync PPs extracted from the Authority Information Access
(AIA) field of all RPKI certificates of each TA. We mimic
the two protocols by running TCP-based traceroute (both
rsync and RRDP are using TCP), on port 443 for RRDP
and port 873 for rsync measurements. We could use ping,
but ICMP might be handled/prioritized differently by network
operators than real traffic. Moreover, we anticipated that path-
level information might become useful for extended analyses
or follow-up studies. The PP hostnames are resolved using
the anchor’s local DNS. We probe each PP hostname via IPv4
and IPv6 (three times per address) every five hours for two
weeks—ensuring coverage of all hours and weekdays. We use
data of traceroutes reaching the correct destination IP. These
include 3,893,594 traceroutes to RRDP PP hostnames and
3,149,005 to rsync PP hostnames.

B. Measuring Delay of RPKI Publication Points

The violin plots in Figure 4 show the distribution of RTT
delay for accessing RPKI rsync and RRDP PPs using IPv4
and IPv6 from each region globally. The x-axis shows the
continent, the y-axis shows the RTT delay in milliseconds in
log scale, the width of the violin reflects the relative density
of data, and the dotted horizontal lines, within each violin,
represent the data’s quartiles.

We observe a similar distribution of RTT delay for both
IP versions, with IPv6 having a slightly lower delay toward
RRDP Publication Points for some regions. Overall, the violin
plots show a significant peak above 100 milliseconds for most
of the continent, except for skewed distribution data points,
which are lower than 100 (102) milliseconds for Europe and
North America, indicating a high concentration of data points.
Generally, RRDP PPs are accessible faster than the rsync PPs
globally.

Nearly 75% of data points from Africa and Oceania observe
an RTT delay of over 300 milliseconds accessing RRDP and

Africa Asia Europe N. America Oceania S. America
10

1

10
0

10
1

10
2

10
3

10
4

R
TT

 in
 M

illi
se

co
nd

s 
(L

og
 S

ca
le

)

rsync on IPv4 rsync on IPv6 RRDP on IPv4 RRDP on IPv6

Fig. 4. Violin plots showing the distribution of IPv4 and IPv6 RTT delay
(in milliseconds, log scale) to RPKI rsync and RRDP Publication Point
hostnames.

rsync PPs, and this number is around 50% for accessing
RRDP PPs. RIR’s PPs have the lowest RTT delay in their
primary serving region, like AFRINIC PP being fast in African
countries only and LACNIC being fast in South America
and users accessing them from other regions experiencing a
relatively high RTT of more than 300 milliseconds on average.

Europe and North America generally have the fastest access
to RPKI resources, possibly due to most PPs being hosted in
these regions. Africa, Oceania, and South American countries
observe the highest RTT delay in accessing RPKI resources.

Eight of the RRDP PPs, including rrdp.apnic.net,
rrdp.ripe.net, all using content distribution networks (CDNs)
like Cloudflare, Akamai, Amazon, and Google, have lower
than 10 (101) millisecond RTT delay for all regions.

C. RTT Delay to RIRs’ RPKI Resources

We use IPv4-only data and select RRDP-only repositories
because they are the primary PPs for RP synchronization.
If RRDP fails, the RP switches to the rsync protocol. The
RTT delay in accessing RPKI PPs from IPv4 and IPv6 are
similar. Europe and North America have faster access to RPKI
resources, and RRDP PPs have lower delays than the rsync PPs
(see Section V-B for details).

We measure the RTT delay in accessing each RIR’s TA
Publication Point and its delegated Publication Points from
every continent. The violin plots in Figure 5 exhibit the RTT
delay distribution for accessing RRDP PPs of each RIR’s
RPKI tree globally.

The shapes of violin plots reflect that for most of the
cases (with few exceptions), each RIR’s Publication Points,
including the delegated ones, have a relatively lower accessing
RTT in their primary serving continent and a high RTT
delay from other regions. For example, the AFRINIC, ARIN,
LACNIC, and RIPE have, on average, an RTT delay range
of less than one to nearly 90 milliseconds for their primary
serving continents, respectively, and a 100 to nearly 700
milliseconds RTT delay for other regions. The prime reason for
this difference is that the PPs are hosted in those regions. We



AFRINIC APNIC ARIN LACNIC RIPE
10

1

10
0

10
1

10
2

10
3

10
4

R
TT

 in
 M

illi
se

co
nd

s 
(L

og
 S

ca
le

)
Africa Asia Europe N. America Oceania S. America

Fig. 5. Violin plots showing the distribution of RTT (in milliseconds, log
scale, IPv4) in accessing RPKI RRDP Publication Point hostnames of each
RIR’s RPKI tree.

identify that a few of APNIC’s delegated PPs use international
cloud infrastructure. For example, rpki.owl.net, originally from
Vanuatu islands of Australia, and rrdp.rp.ki using xTom[37]
and Misaka Network [38] cloud infrastructures, respectively,
that has data centers in Oceania, North America, and Europe
causing the lower bump of high-density RTT smaller than 10
milliseconds for these regions.

AFRINIC PP has more than 200 milliseconds RTT delay
for other continents, except Africa, with Europe being slightly
lower than the rest. Europe also has the lowest RTT delay in
accessing APNIC RPKI tree Publication Points, with North
America and Asia being the second and third with the lowest
RTT. After North America, which has the lowest RTT delay to
ARIN’s RPKI tree PPs, Europe and South America are second
and third with the lowest RTT delay. Africa observes a high
RTT of 300 to 800 milliseconds when accessing ARIN’s PPs.
While Asia, Africa, and Oceania observe a high RTT delay
in the range of 400 milliseconds to 700 milliseconds, the vast
majority of probes from Europe and North America have RTT
delay in the range of 100 milliseconds to 500 milliseconds
RTT toward LACNIC PPs. The RIPE PPs have the second
lowest RTT, the first being Europe, for North America, with
nearly 50% RTT delay being below 100 milliseconds. Asia,
Africa, and South America have a similar pattern of RTT delay,
with more than 100 milliseconds on average for nearly 75%
of the data. Oceania has the highest range of RTT delay of
above 200 milliseconds towards RIPE PPs for more than 50%
of the data.

For both APNIC and RIPE RPKI PPs, we observe densities
of data with RTT of less than 10 milliseconds for other regions
apart from their primary serving zone. Using the IP2ASN [39]
and BGPtools [40], we identify CDN service providers that
serve the fastest PPs in RPKI.

Help of CDN: To quantify the added benefits of serving
PPs from a CDN, we compare IPv4 RTTs for the two largest
RIR PPs: RIPE’s CDN-hosted PP rrdp.ripe.net and ARIN’s
rrdp.arin.net self-hosted PP. Here, we consider only RRDP
hostnames since rsync cannot be served by CDNs. Figure 6

Afric
a

Asia
Europe

N. America

Oceania

S. America
10

1

10
0

10
1

10
2

10
3

R
TT

 in
 M

illi
se

co
nd

s 
(L

og
 S

ca
le

) RIPE using CDN ARIN

Fig. 6. Violin plot showing the distribution of RTT (in milliseconds, log scale)
to RPKI Publication Point hosted on CDN vs. None-CDN, from continents.

illustrates the continent-level distribution RTT delay for ac-
cessing RIPE and ARIN’s PPs. ARIN’s PP has, on average, a
high RTT delay of more than 100 milliseconds, peaking at 300
milliseconds, for more than 90% of the data from all continents
except North America. Accessing RIPE PP has a much lower
RTT, peaking at lower than 10 milliseconds, with some around
1 milliseconds, for all the continents. A few networks with
high RTT delays shown on the upper part of the violin plot
might be due to the slow local infrastructure at a particular
time or the impact of routing policies leading traffic to a CDN
location with a high RTT. a high RTT. More than 75% of the
RTT data on accessing ARIN and RIPE PPs from regions
around the world, apart from their primary serving regions,
show 100 milliseconds RTT delay for ARIN PP and less than
10 milliseconds RTT delay for RIPE PP. This indicates RIPE
PP is accessible ten times faster for 75% of the cases.

Artificial Delay: To measure the impact of RTT delay on
RP synchronization, we artificially add RTT delay for all the
egress packets from the measurement machine in the network
path and re-run the RP software to synchronize with RPKI.
For Cold mode, every additional 100 milliseconds of RTT adds
around 25 seconds and 15 seconds extra delay, respectively, to
the RP synchronization process of Routinator and rpki-client.
For the Warm mode, every 100 seconds of extra RTT delay
adds around 5 seconds for Routinator and 3 seconds for rpki-
client.

VI. DISCUSSION

The reason for the RPKI synchronization delay varies
based on the selection of RP software. Routinator has the
faster cryptographic verification of RPKI objects, and rpki-
client has efficient network handling in RPKI synchronization.
This difference between the implementation of RP software
indicates a potential room for optimization for Routinator to
handle the network activities efficiently and for the rpki-client
to perform the cryptographic verification process faster. As
RPKI synchronization requires a high number of read and
write operations, using a memory-mapped file system can
further optimize the delay.



RIPE and APNIC consolidate multiple prefixes into a single
ROA object, which is cheaper regarding resource consumption
(CPU load, disk space) and more beneficial during the RP
synchronization process than one prefix per ROA. Conversely,
ARIN, AFRINIC, and LACNIC have a simpler management of
ROA objects of more or less one prefix per ROA. However,
using a single ROA for multiple prefixes complicates ROA
management, for example the expiration or change for a single
prefix requires to reissue the ROA for all prefixes.

In terms of management, using ROA with a single IP prefix
is simpler and thus recommended [41], [42]. One of the
RIRs acknowledged aggregating multiple prefixes for the same
ASN on a single ROA, which needs a complex system that
has to carefully track data changes and reissue ROA objects
proactively without risking IP prefix invalidation. Adding a
new prefix to RPKI means that the CA should maintain a state
for the existing ROAs, revoke the ROA that should be updated,
and create a new one with the new prefix, a time-consuming
task for CAs but beneficial for RP synchronization.

The historical trend of registering prefixes to the RPKI
[43], reported growth of IPv6 prefixes in global routing table
[44], usage of small CIDR sizes or hyperspecific prefixes
[45], with some prefixes used by multiple origin ASes [46]
results in a higher number of VRPs coming in the RPKI
ecosystem. Delegated RPKI permits a distributed and flexible
architecture but may introduce complexity and potential delays
in RPKI synchronization. Despite the current and relatively
low numbers of delegated repositories, our findings reveal that
RPs hang on specific delegated Publication Points for hundreds
of seconds, making the entire RPKI synchronization process
slow. The two studied RPs implement timeout mechanisms
to skip unresponsive Publication Points, yet as the RPKI
infrastructure and the number of RPKI objects (e.g., ROAs) is
growing, we expect a larger number of delegated CAs; hence,
quick synchronization will become even more challenging.

The current Publication Points deployment of RPKI data
lacks a worldwide quick-to-access setup, with most of the PPs
being accessible fast only in their primary serving regions.
Serving the RPKI data from a worldwide, easy-to-access
infrastructure like a CDN will help reduce the network delay
in the RPKI synchronization process. We observe that RRDP
PPs with cachable data on CDN are quicker to access globally
than the PP used for rsync, which is not cachable on CDN.
Ideally, serving all the RPKI data using RRDP might be faster.
However, in practice, we encounter cases where a Publication
Point can not serve data using RRDP, and they switch to the
rsync protocol, which has known vulnerabilities [47] and slows
the RP synchronization.

The rapid changes in RPKI software and RP implemen-
tations make RPKI a challenging and moving target for
this study. We found two Publication Points with no IPv6
addresses, resulting in a disparate number of ROAs when val-
idating from an IPv6 RP; however, the problem was resolved
within a few months. Introduction of new object types like
AS Provider Authorization, ASPA [48], Signed Prefix List
[49], improved validation procedure [50], are examples of

the rapid changes in the RPKI landscape. Thus, we believe
RPKI synchronization delay may change over time and needs
constant attention from the networking community.

We acknowledge that conducting RP synchronization from
diverse locations with additional RP software would provide
us with broader coverage of how networks experience RP
synchronization delay. Despite limitations, our approach is
suitable, and our analysis identifies the delay factors in the
RP synchronization process and provides valuable insights on
how to improve them.

VII. CONCLUSION

Using two RP software, we thoroughly analyze the elements
that induce RP synchronization delay, including the structure
of ROAs, the impact of delegation in RPKI resource hosting,
and the latency to Publication Points. Network delay and the
cryptographic verification delay of RPKI data are the two main
elements of delay in RPKI synchronization. Routinator is fast
in cryptographic verification and robust in handling empty
CPU cache, but suffers from many page faults during data
retrieval from the Internet. Therefore, it has the highest delay
of nearly 500 seconds in Cold mode and the lowest delay of 40
seconds in Hot mode. rpki-client efficiently uses the network
with almost no page faults, but it takes double the time of
Routinator for cryptographic verification of ROAs and is more
prone to the system’s CPU cache state. Consequently, it has
around 190 seconds, less than half of the Routinator delay in
Cold mode, and more than double of Routinator in Hot mode,
and a similar delay in Warm mode. In normal operations, RPs
typically run in Warm mode, so rpki-client and Routinator
will have a very similar synchronization delay in day-to-day
performance.

Bundling several prefixes of an AS into a single ROA can
reduce the synchronization time by a factor of three, and
is possible for more than 60% of ASes in RPKI. Delegated
CAs hosted on a fast-to-access infrastructure positively impact
the RPKI validation rate, but for ARIN, 7% of VRPs from
delegated CAs cause more than 90% delay.

We highlight regional disparities in accessing RPKI PPs,
with Europe and North America experiencing lower latencies
and other regions significantly higher latencies in accessing
RPKI resources. The current PP deployment delays reveal that
each RIR’s RPKI tree is accessible relatively faster in their
primary serving regions and slower from other regions. Our
results show that CDN usage can reduce the PP accessing time
by up to 10 times in some regions.

We quantify that every additional 100 milliseconds of extra
delay in the network path will increase the RP synchronization
by 25 seconds for Routinator and 10 seconds for rpki-client
in Cold cache mode, and almost half of the values in Warm
mode.

ACKNOWLEDGMENT

We thank the anonymous reviewers of our paper for their
valuable feedback. We also thank the Internet Society for their
partial financial support of the research under the MANRS
research fellowship program.



REFERENCES

[1] R. Bush and R. Austein, The Resource Public Key Infrastructure
(RPKI) to Router Protocol, Version 1, RFC 8210, Sep. 2017. [Online].
Available: https://www.rfc-editor.org/info/rfc8210.

[2] C. Lynn, S. Kent, and K. Seo, X. 509 extensions for IP addresses and
AS identifiers, 2004.

[3] M. Lepinski and S. Kent, RFC 6480: an infrastructure to support
secure Internet routing, 2012.

[4] M. Candela, “RPKI Automation and Monitoring,” in LACNIC 35,
2021.

[5] M. Candela, “NTT’s RPKI Deployment Update,” in RIPE 82, 2021.
[6] M. Candela, “A one-year review of RPKI operations,” in RIPE 84,

2022.
[7] G. Huston, BGP Updates in 2024, 2025. [Online]. Available: https:

//blog.apnic.net/2025/01/07/bgp-updates-in-2024/.
[8] B. Zhang, D. Massey, and L. Zhang, “Destination reachability and

BGP convergence time [border gateway routing protocol],” in IEEE
Global Telecommunications Conference, 2004. GLOBECOM’04.,
2004.

[9] A. García-Martínez and M. Bagnulo, “Measuring bgp route propaga-
tion times,” IEEE Communications Letters, vol. 23, no. 12, 2019.

[10] R. Fontugne, A. Phokeer, C. Pelsser, K. Vermeulen, and R. Bush,
“RPKI Time-of-Flight: Tracking Delays in the Management, Control,
and Data Planes,” in PAM, 2023.

[11] National Institute of Standards and Technology (NIST), RPKI Moni-
tor, 2025. [Online]. Available: https://rpki-monitor.antd.nist.gov.

[12] T. Bruijnzeels, O. Muravskiy, B. Weber, and R. Austein, RFC 8182:
The RPKI Repository Delta Protocol (RRDP), 2017.

[13] R. Bush and R. Austein, RFC 6810: The Resource Public Key
Infrastructure (RPKI) to Router Protocol, 2013.

[14] E. Osterweil, T. Manderson, R. White, and D. McPherson, “Sizing
estimates for a fully deployed rpki,” Verisign Labs, Technical Report
1120005, 2012. [Online]. Available: https://cs.gmu.edu/~eoster/doc/
sizing.pdf.

[15] F. V. Silveira, RPKI Repositories and the RIPE Database in the Cloud,
2021. [Online]. Available: https://labs.ripe.net/author/felipe_victolla_
silveira/rpki-repositories-and-the-ripe-database-in-the-cloud/.

[16] J. Kristoff, R. Bush, C. Kanich, G. Michaelson, A. Phokeer, T. C.
Schmidt, and M. Wählisch, “On measuring rpki relying parties,” in
ACM IMC, 2020.

[17] N. Labs, Routinator manual, https://routinator.docs.nlnetlabs.nl/en/
stable/manual-page.html, 2024.

[18] O. Project, rpki-client Manual, https://man.openbsd.org/rpki-client,
2024.

[19] T. Hlavacek, P. Jeitner, D. Mirdita, H. Shulman, and M. Waidner,
“Behind the scenes of rpki,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022.

[20] T. Hlavacek, P. Jeitner, D. Mirdita, H. Shulman, and M. Waidner,
“Stalloris: RPKI Downgrade Attack,” in USENIX Security, 2022.

[21] T. Hlavacek, P. Jeitner, D. Mirdita, H. Shulman, and M. Waidner,
“Beyond limits: How to disable validators in secure networks,” in
ACM SIGCOMM, 2023.

[22] K. van Hove, J. van der Ham-de Vos, and R. van Rijswijk-Deij,
“rpkiller: Threat Analysis of the BGP Resource Public Key Infras-
tructure,” Digital Threats: Research and Practice, vol. 4, no. 4, 2023.

[23] A. Reuter, M. Wählisch, and T. C. Schmidt, “RPKI MIRO: Monitor-
ing and Inspection of RPKI Objects,” ACM SIGCOMM CCR, vol. 45,
no. 4, 2015.

[24] A. Reuter, R. Bush, I. Cunha, E. Katz-Bassett, T. C. Schmidt,
and M. Wählisch, “Towards a rigorous methodology for measuring
adoption of RPKI route validation and filtering,” ACM SIGCOMM
CCR, vol. 48, no. 1, 2018.

[25] T. Chung, E. Aben, T. Bruijnzeels, B. Chandrasekaran, D. Choffnes,
D. Levin, B. M. Maggs, A. Mislove, R. v. Rijswijk-Deij, J. Rula, et al.,
“RPKI is coming of age: A longitudinal study of RPKI deployment
and invalid route origins,” in ACM IMC, 2019.

[26] C. Testart, P. Richter, A. King, A. Dainotti, and D. Clark, “To Filter
or Not to Filter: Measuring the Benefits of Registering in the RPKI
Today,” in PAM, 2020.

[27] W. Li, Z. Lin, M. I. Ashiq, E. Aben, R. Fontugne, A. Phokeer,
and T. Chung, “RoVista: Measuring and Analyzing the Route Origin
Validation (ROV) in RPKI,” in ACM IMC, 2023.

[28] N. Rodday, Í. Cunha, R. Bush, E. Katz-Bassett, G. D. Rodosek, T. C.
Schmidt, and M. Wählisch, “The Resource Public Key Infrastructure
(RPKI): A Survey on Measurements and Future Prospects,” IEEE
Transactions on Network and Service Management, vol. 21, no. 2,
2023.

[29] D. Mirdita, H. Schulmann, and M. Waidner, SoK: An Introspective
Analysis of RPKI Security, 2024. eprint: arXiv:2408.12359. [Online].
Available: https://arxiv.org/abs/2408.12359.

[30] D. Mirdita, H. Schulmann, N. Vogel, and M. Waidner, The CURE to
vulnerabilities in RPKI validation, 2023.

[31] H. Schulmann, N. Vogel, and M. Waidner, RPKI: Not Perfect But
Good Enough, 2024. [Online]. Available: https://arxiv.org/abs/2409.
14518.

[32] Y. Li, H. Zou, Y. Chen, Y. Xu, Z. Ma, D. Ma, Y. Hu, and G. Xie, “The
Hanging ROA: A Secure and Scalable Encoding Scheme for Route
Origin Authorization,” in IEEE INFOCOM 2022-IEEE Conference on
Computer Communications, 2022.

[33] Y. Gilad, O. Sagga, and S. Goldberg, “Maxlength Considered Harmful
to the RPKI,” in Proceedings of the 13th International Conference
on Emerging Networking EXperiments and Technologies (CoNEXT),
2017.

[34] D. Kristaps, J. Claudio, S. Job, d. R. Theo, T. Sebastian Benoit, and
Buehler, rpki-client, Available at https://www.rpki-client.org, 2023.

[35] N. Labs, Routinator 3000, Available at https : / /www.nlnetlabs .nl /
projects/rpki/routinator/, 2023.

[36] J. Frieß, D. Mirdita, H. Schulmann, and M. Waidner, “Byzantine-
Secure Relying Party for Resilient RPKI,” in Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications
Security, 2024.

[37] xTom, Xtom facilities, 2025. [Online]. Available: https://xtom.com/
facilities/.

[38] Misaka Network, Inc., Misaka network. [Online]. Available: https :
//www.misaka.io.

[39] I. H. Report, Ip2asn, 2025. [Online]. Available: https://github.com/
InternetHealthReport/ip2asn.

[40] B. Tools, BGP Tools, 2025. [Online]. Available: https://bgp.tools.
[41] Z. Yan, R. Bush, G. Geng, T. de Kock, and J. Yao, Avoiding Route

Origin Authorizations (ROAs) Containing Multiple IP Prefixes, RFC
9455, Aug. 2023. [Online]. Available: https:/ /www.rfc- editor.org/
info/rfc9455.

[42] Z. Lai, Z. Yan, G. Geng, and H. Nakazato, “Issuance Policies of Route
Origin Authorization with a Single Prefix and Multiple Prefixes: A
Comparative Analysis,” International Journal of Advanced Computer
Science and Applications, vol. 15, no. 3, 2024. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2024.01503116.

[43] National Institute of Standards and Technology (NIST), RPKI Moni-
tor, https://rpki-monitor.antd.nist.gov, 2025. (visited on 01/16/2025).

[44] Potaroo, BGP Routing Table Analysis, https://bgp.potaroo.net/v6/as2.
0/index.html, 2024.

[45] K. Z. Sediqi, L. Prehn, and O. Gasser, “Hyper-specific prefixes: Gotta
enjoy the little things in interdomain routing,” ACM SIGCOMM CCR,
vol. 52, no. 2, 2022.

[46] K. Z. Sediqi, A. Feldmann, and O. Gasser, “Live long and prosper:
Analyzing long-lived moas prefixes in bgp,” in IEEE TMA, 2023.

[47] Computer Incident Response Center Luxembourg (CIRCL), Vul-
nerability bundle: D938dc28-6877-40db-ad5f-25f3051288e6, 2025.
[Online]. Available: https://vulnerability.circl.lu/bundle/d938dc28-
6877-40db-ad5f-25f3051288e6.

[48] A. Azimov, E. Bogomazov, R. Bush, K. Patel, J. Snijders, and
K. Sriram, “BGP AS_PATH Verification Based on Autonomous
System Provider Authorization (ASPA) Objects,” Internet Engineer-
ing Task Force, Internet-Draft draft-ietf-sidrops-aspa-verification-19,
2024. [Online]. Available: https://www.ietf.org/archive/id/draft-ietf-
sidrops-aspa-verification-19.html.

[49] J. Snijders and G. Huston, A profile for Signed Prefix Lists for Use
in the Resource Public Key Infrastructure (RPKI), https://datatracker.
ietf.org/doc/draft-ietf-sidrops-rpki-prefixlist/, 2024.

[50] J. Snijders and B. Maddison, RPKI Validation Re-reconsidered, https:
/ /datatracker . ietf .org /doc/draft - spaghetti - sidrops- rpki - validation-
update-03/, 2023.



Fig. 7. RPKI components and modes of operation. The red part highlights the focus of this paper.

APPENDIX

ETHICS

This work does not raise any ethical issues.

A. RPKI Validation Rate at CA Depth

Figure 8 illustrates the RPKI data validation rate or the
number of VRPs validated per second at each CA depth. For
APNIC, delegated CAs positively impact RP synchronization
and increase the VRP validation rate from 1300 VRPs to
almost 1500 VRPs per second. For ARIN, the delegated CAs
reduce the RPKI validation by almost half, from 800 VRPS per
second at a CA depth of 3 to around 450 VRPs at depths of 4
and 5. The RIPE delegated CA at depth reduces the validation
rate of VRPs from 800 to nearly 750 VRPs per second. The
impact of outliers, as explained in Figure 3, reducing the
validation rate of RPKI data is visible here as well.

≤3 ≤4 ≤5
0

500

1k

1.5k

2k

VR
Ps

 p
er

 S
ec

on
d 

(C
ol

d 
C

ac
he

) APNIC

≤3 ≤4 ≤5

ARIN

≤3 ≤4 ≤5

RIPE

Maximum Depth of Certificate Chain

Fig. 8. RP synchronization rate of VRPs per second at various Certificate
chain depths of TAs.


