
The Initial Input Routine of the Parametron Computer PC-1

Eiiti Wada

�

Abstract

Forty years ago, the PC-1, parametron computer 1, was born at Professor Hidetosi Takahasi's Laboratory.

The logical elements of the PC-1 were parametrons, which supported majority logic. The memory system

operated in a two frequency read/write scheme. The word selection mechanism applied error correcting

code to decrease the number of elements. Most of the hardware technologies were created by Eiichi Goto.

We studied the EDSAC computer precisely, however we developed our own architecture and programming

system based upon our own philosophy. The machine instruction set was chosen to ease programming.

The normal teletype on the market was employed, leaving the burden of code conversion tasks to software,

which seemed to us to have had almost in�nite abilities.

However, the real memory capacity was indeed very small, which forced us to invent a clever way to

implement things. In this paper, after introducing the functions of the initial input routine R0, examples

of (i) code conversion table parasitic on the program body and (ii) the magic number method to control

the number of multiplications, both used in the initial input routine, are described.

The PC-1 is one of the �rst computers which implemented interruption. That is, the peripheral devices

would interrupt the running program by saving the address of the next instruction to be executed and

jumping to a �xed location in the memory. As a simple experiment of multiple programming, cooperation

of the binary to decimal conversion program and the printer control program by means of the circular

bu�er was performed.

At the end of this paper, the program lists of the selected routines are appended.

0 Introduction

The PC-1 (Parametron Computer 1)[0] was a binary, single-address computer developed at Professor Hidetosi

Takahasi's Laboratory of the Department of Physics, University of Tokyo, and one of the �rst general purpose

computers using parametron logic and two frequency magnetic core memory. Its construction was started

in September 1957 and completed on March 26, 1958. The PC-1 closed its operation in May 1964.

The PC-1 was used for research works both in hardware and software at Takahasi's Laboratory and for

scienti�c computation by the researchers of the Faculty of Science.

The EDSAC computer was the most inuential in designing and implementing in all aspects because, in

those days, [1] was the only available textbook.

The arithmetic and control circuits were made of 4200 parametrons; numbers were 2's complement binary:

short number word was 18 bit and long one was 36 bit; instruction word was 18 bit single-address, some 20

di�erent instructions; memory: 512 short words; clock was 15 KHz; addition and subtraction 4 clock times,

multiplication 26 clock for short multiplier or 44 clock for long multiplier, division 161 clock, store 8 clock;

power consumption: 3kva; oor area: 8 square meters. Input: photoelectric paper tape reader; output:

teletype.

The PC-1 seemed to be the �rst computer that installed the interruption mechanism, which enabled us to

experiment with multiple programming in 1959. The research on modular computations referred to in [2]

was conducted on this machine.

The present paper reviews the parametron circuits and memory structure in sections 1 and 2, then the

structure of memory and registers in section 3. In section 4, the teletype code used by the PC-1 is given

so that the readers can understand the details of the input/output routines. Section 5 is the summary of

the machine instructions. A few other instructions implemented later for experimental use are not included

here. In section 6, the mechanism of interruption is described briey. The program used in the multiple

programming is listed in Appendix A. Section 7 sketches the initial input routine R0. A copy of the user's

guide reproduced from the program library and the program list will be found in Appendices B and C. In

section 8, I conclude. Appendices not mentioned above, D and E, are typical examples of the PC-1 input

and output routines.

�

Fujitsu Laboratories Ltd, e-mail: wada@u-tokyo.ac.jp

0

1 Parametron

The parametron was invented by Eiichi Goto, when he was a graduate student, in 1954. It was a resonant

circuit of frequency f energized by a parametric excitation. When the circuit parameter was changed re-

peatedly with the twice frequency of the resonance, the circuit got energized. With respect to the excitation

frequency of 2f (gray line), the circuit might be energized in one of the two possible phases, 0 and � (broken

lines). (see Figure 0)

Figure 0 Parametron

One of the two phases was considered to represent 0 and the other 1, thus it was possible to represent one

bit of information.

I II III

Figure 1 Parametron connection

The parametron had a circuit shown in �gure 0 right. All the parametrons were grouped in one of the three

sets, I, II and III. Each set was excited in turn and the output of set I was fed to II, II to III, III to I

by connecting through the input transformers (Figure 1). The input signals were oscillation phases of the

previous set and the oscillation of the new set was determined by the majority of input signals (phases). So,

the parametrons realized majority logic (Figure 2). The negation was achieved by reverse coupling.

I

II

Figure 2 Parametron connection for majority logic

Figure 3 shows the typical operations with the possible constant input 0 or 1. (0 is represented as �, 1 as

+ in the circle. The small cross on the input line indicates the negation.) In Figure 3, the rightmost circuit

is the full adder. ([x,y,z] means majority of x, y, z.) One of the interesting circuits was a carry assimilator

which assimilated n digit carries in log

2

n clock times.

+

-

-

++-

x

y

x

y

x

y

x

y

x

y

z

a

b

c [x,y,z]

x∧ y x∨ y x⊃ y x⊕ y s x⊕ y⊕ z

Figure 3 Parametron logic

1

c0

x0

y0

s0

c1

x1

y1

s1

c2

x2

y2

s2

c3

x3

y3

s3

c4

x4

y4

s4

c5

x5

y5

s5

c6

x6

y6

s6

c7

x7

y7

s7

c8

Figure 4 Carry assimilator

The carry assimilator works as follows: The parametrons in

the �gure are subscripted in each horizontal line 0, 1, etc from

the left. The carry input to the highest full adder, c7, is 0 if

both x6 and y6 are 0 and 1 if both x6 and y6 are 1. If x6

0

and y6

0

are 1 then x6

1

and y6

1

become to 1 and x6

2

and y6

2

also become to 1, thus c6

3

is 1. In case both x6 and y6 are

0, similarly c7 is 0. However, if x6 and y6 are 0 and 1, then

two inputs to x6

1

and y6

1

cancel out and x5 and y5 will have

the casting vote. If x5 and y5 are again 0 and 1, then c6 is

determined by x4 and y4 at x6

2

and y6

2

. In this fashion, carry

inputs c4 to c7 are determined at the third parametron column.

The carry inputs to c2 and c3 are determined at the second

parametron column. Thus, in general, the steps to assimilate

carries are log

2

n.

Although not shown in Figure 4, the usual carry paths from

one full adder to the next exist. They are used in the repeated

additions during multiplication. At the �nal stage of multipli-

cation, carries are assimilated using this circuit.

2 Memory

Most of the memory technologies of the PC-1 were also invented by Goto. Magnetic core memory of the

PC-1 used sinusoidal waves rather than pulses for write/read operation. The core matrix consisted of a 36

� 256 rectangular wire net. In each writing operation, a sinusoidal wave of frequency f=2 was put through

the selected one of the 256 row wires, and the 36 information bits were applied to the 36 column wires

in the form of the sinusoidal wave of frequency f , where the phase of the latter wave represented each

information bit. The cores on the cross points of both wires were subjected to the magnetizing force of the

form I

0

cos�ft�I

1

cos 2�ft, and asymmetry of this wave form caused magnetization of the core in one or

the other direction. (Figure 5)

If(πphase)

If(0phase)

If/2

If/2+If(0phase)

If/2+If(πphase)

If/2

If

Figure 5 Memory write in

The reading out signals were obtained from the 2nd harmonic waves from the column wires. (Figure 6)

If/2

Vf/2+Vf+..

magnetization

magnetic field

1

0

If/2

Figure 6 Memory read out

The address selection mechanism was based on the error correcting code[3].

2

I0

I1

I2

I3

I(y1)I(y0)

Figure 7 Word selector

Table 0 Selection logic

input output

I(y

0

) I(y

1

) I

0

I

1

I

2

I

3

�I �I �2I 0 0 +2I

+I �I 0 �2I +2I 0

�I +I 0 +2I �2I 0

+I +I +2I 0 0 �2I

The transformers shown in Figure 7, when driven by input currents I(y

0

) and I(y

1

) of the same frequency

and the same amplitudes but in either phase, 0 or �, which are indicated by +I and �I, will produce the

output current shown in the Table 0. The parametrons will oscillate when driven with full amplitude, but

will not oscillate by weaker current. So, in this case, of the word selection parametrons driven by the output

current, only those that are fed by �2I oscillate, others remaining inactive. Now the di�erence between the

maximal amplitude and the next one is only 2I and the discrimination power is not enough. However, by

employing, for example, the 7 bit Hamming error correcting code for 4 input lines, discrimination power is

7I vs �I, which is enough for the purpose of selection. The PC-1 used 18 bit input lines and excited only

one word selection parametron out of 256.

3 Structure of Memory and Registers

Figure 8 left is the structure of the PC-1 memory. It consists of 512 short words. Like the EDSAC, two short

words in 2n and 2n + 1 are used as one long word. Instructions are in the short words, but numeric data

may be in 18 bits or 36 bit. The instructions which refer to the long word operand must have even number

address and 1 in l/s bit. Some instructions, however, used the l/s bit for other purposes. Of three arithmetic

registers prepared in the arithmetic unit, the accumulator and the R register were used for programming.

The memory register was used to hold the multiplier and divisor. The contents of the arithmetic register

were assumed to be fractional, i.e. numbers represented are in the range of �1 � n < 1.

Storage Registers

Inst. Register

36 bit

36 bit

36 bit

18 bit 18 bit

address 0 address 1

address 510 address 511

long word

short word short word sign bit

sign bit

accumulator

R register

l/s bitfunction part

address part

18 bit

Figure 8 Storage and registers

4 Teletype Code

The PC-1 used the normal teletype for input/output without modifying the code. In those days, the

teletype code used in Japan was of 6 bits. The lower 5 bits are similar to the 5 bits international teletype

code. Number digits and special characters have 1 in the most signi�cant bit. However, since the codes of

the number digits are based on the character codes of the third row of the teletype, the code patterns and

the values of numerical digits were independent. Therefore code conversion tables were needed by input and

output routines.

3

Table 1 Teletype code

000000 Blank 010000 e 100000 Signal 110000 2

000001 t 010001 z 100001 4 110001

000010 CR 010010 d 100010 - 110010

000011 o 010011 b 100011 8 110011

000100 SP 010100 s 100100 110100

000101 h 010101 y 100101 110101 5

000110 n 010110 f 100110 , 110110

000111 m 010111 x 100111 . 110111 =

001000 LF 011000 a 101000 + 111000 0

001001 l 011001 w 101001 111001 1

001010 r 011010 j 101010 3 111010

001011 g 011011 FGRS 101011 111011

001100 i 011100 u 101100 7 111100 6

001101 p 011101 q 101101 9 111101

001110 c 011110 k 101110 111110

001111 v 011111 LTRS 101111 : 111111 Erase

abcdefghijklmnopqrstuvwxyz 0123456789 +-=,.:
Figure 9 Tape image

5 Machine Instructions

a n, al n Add the number in storage location n, nL into the accumulator.

b n, bl n Replace the accumulator with the bitwise exclusive or of the numbers in storage location n,

nL and the accumulator.

c n, cl n Replace the accumulator with the bitwise logical and of the numbers in storage location n, nL

and the accumulator.

d n, dl n Divide the number in the accumulator and R register by the number in storage location n,

nL and place the quotient in the accumulator, remainder in the R register. The remainder is

always positive.

i n If the tape reader is ready, read a character and place it into a

0

!A a
5

and clear a

6

!A a
35

; if not

ready, jump to n.

jl n Jump to n.

k n If the number in the accumulator is <0, jump to n.

kl n If the number in the accumulator is >=0, jump to n.

l n If n < 1024, shift the accumulator n places to the left; if n >= 1024, shift the accumulator

logically 2048� n places to the right.

ll n Same as l n except to shift the accumulator and the R register.

n n, nl n Clear the accumulator and subtract the number in storage location n, nL from the accumulator.

o n If the teletype is ready, place a

0

!A a
5

to the teletype; if not ready, jump to n.

p n, pl n Clear the accumulator and add the number in storage location n, nL into the accumulator.

q n, ql n Place the number in the R register and load the R register with the number in storage location

n, nL.

r n If n < 1024, shift the number in the accumulator n places to the right; if n >= 1024, shift the

number in the accumulator 2048� n places to the left.

rl n Same as r n except to shift the accumulator and the R register.

s n, sl n Subtract the number in storage location n, nL from the accumulator.

t n, tl n Store the contents of the accumulator to storage location n, nL.

v n, vl n Multiply the number of the accumulator and the number in storage location n, nL and place

the product in the accumulator and the R register.

w n, wl n Do the same as vn vln and add the original contents of the R register multiplied by 2

�17

if w

n, 2

�35

if wl n to the product.

x n Store a

7

!A a
17

to the address part of storage location n.

z n Jump to n if a

7

!A a
17

is 0.

zl n Jump to n if the content of the accumulator is 0.

4

6 Interruption

From the very beginning, the input/output instructions were designed to have busy jump facilities, by which,

when the devices were not ready, instead of waiting for the completion of the operation, the programmer

could choose another path by jumping to that program context. However, one year's experience concluded

that the busy jump facilities were hard to use e�ectively.

So in the summer of 1959, another approach was undertaken. That was interruption. i.e., the devices were

designed to interrupt the program whenever their state became ready for use.

The interruption designed at that time worked as

follows:

0. When the device operations completed, the

program counter which held the location of the

next instruction was stored in the address part

of location 510 and control was sent to 511 (last

storage location).

1. At the same time, further interruption was pro-

hibited by setting a ipop, because, otherwise,

the return location would be overwritten by the

subsequent interruption.

2. The jump instruction in 511 could lead the con-

trol to the interruption process program.

3. At the end of the interruption process pro-

gram, after resetting the interruption prohibit

ipop, the program returned to the former

routine with the information in 510.

In the print routine like P2 (Appendix E), digits were

printed after binary-decimal conversion and code

conversion to the teletype codes. However, one digit

conversion was quicker than one digit printing by the

teletype. Accordingly, the output conversion pro-

gram placed the teletype code in the circular bu�er

without waiting for the completion of the previous

printing. Later, when the teletype �nished one digit

printing, it interrupted a running program, and the

interruption process program, taking up the control,

started the teletype again with the next code taken

from the circular bu�er.

The program list is shown in Appendix A.

prohibit
interrupt

plant link
in 510

store code
to buffer

1+ index
of buffer

output code
to printer

1+ exdex
of buffer

buffer
empty?

load code
from buffer

printer
ready?

buffer
full?

restore
accumulator

permit
interrupt

save
accumulator

from conversion from interrupt

return via 510

no

no

no

yes

yes

yes

Figure 10 Interruption process program

7 The Initial Input Routine R0

R0, the initial input routine of the PC-1, is similar to the initial orders of the EDSAC or the DOI (decimal

order input) of the ILLIAC I, in that the function codes are denoted by the mnemonic code, the address

numbers are denoted by decimal numbers etc. In the microscopic view, there are several di�erences.

0. Because of the use of 6 bit teletype code, there were more characters available for programming.

Without shifting to the upper case, we could use all the small alphabetic characters, decimal digits,

and 6 special characters, (comma, period, colon, equal, plus and minus)

1. Instructions and directives were terminated by the special characters, thus it looked more user friendly.

(a) instructions and short numbers were delimited by commas.

(b) directives were delimited by periods.

(c) start addresses of the program segments were indicated by colons.

(d) code letters were de�ned by equal signs.

(e) long numbers were delimited by plus or minus characters.

2. Teletype codes for number digits had no relation to the number values, a code conversion table had to

be used and it was allocated in the initial input routine. The address numbers of some instructions of

the initial input routine served as the code table.

3. A digit counter for reading fractional numbers was implemented using the magic numbers, that is the

ten odd numbered decimal fraction consisted of the most signi�cant ten bits.

5

The user's guide of R0 is given in Appendix B. Program code is in Appendix C.

A short example of the usage of the initial routine follows:

0p=116, fcode letter p is de�ned to 116.g

0p: program of print routine fprint routine stored from 116g

: : :tlh, it, jlp,: : : ftlh, a number to be printed is stored in 0hL,

it, loads the address in the accumulator (Wheeler linkage),

jlp, is an unconditional jump to print routineg

7.0 Code Table Hidden in the Program

As aforementioned, the codes of number digits and number values were independent. So, we have to have

the code conversion table somewhere. In the �rst version of the initial input routine, ten consecutive short

words were used to accommodate the code table, just like the character table in the subroutine P2 shown in

Appendix E, and each input character had to be compared to determine its numerical value. The conversion

using the table of other direction, i.e. a table from code to numerical value was considered to occupy a larger

area since the smallest code was �31 (4) and the largest �4 (6); the table size could be 28 short words,

which seemed too large for the 512 word computer. So, the accepted solution was to hide (or distribute) the

code table in the program body of the initial input routine. This really worked �ne.

Table 2 is a list of digits, the corresponding code and the value of the codes. Each of the values + 56 was

the address where an instruction with the number in its address part had to be stored. The instructions of

these locations were shown in the last column of the table. The total program is in Appendix C.

Similarly, other terminating characters were treated by assigning the pseudo instructions (in the program of

R0, this is referred to as the base orders) in the appropriate locations. The result are shown in Table 3. The

star marks in the column of content indicate 1 in the sign bit. To obtain the instructions (most of them are

jump instructions), the content was added to *nl 12 (instruction in 14 of the initial input routine).

This was possible because the initial input routine was stored in a �xed place and the addresses were

unchanged.

Table 2 Conversion table for digits

digit code value address content

0 111000 -8 48 r 0

1 111001 -7 49 l 1

2 110000 -16 40 p 2

3 101010 -22 34 x 3

4 100001 -31 25 jl 4

5 110101 -11 45 kl 5

6 111100 -4 52 jl 6

7 101100 -20 36 rl 7

8 100011 -29 27 Space 8

9 101101 -19 37 ll 9

Table 3 Base orders for special symbols

symbol code value address content directive

, 100110 -26 30 *s 45 jl 57

. 100111 -25 31 *s 3 jl 15

: 101111 -17 39 *el 54 x 66

= 110111 -9 47 *nl 12 p 24

+ 101000 -24 32 *s 6 jl 18

- 100010 -30 26 *s 6 jl 18

7.1 The Magic Number

In the days of the PC-1, memory was the most crucial resource. One of the techniques used in the input

routine was counting the number of characters by means of the strobe, the magic numbers, in the course of

reading in a fractional number up to 10 decimal digits.

Reading in the fractional numbers, for instance, 0.25, the fractional part was �rst read as an integer. So,

0.25 appeared in the accumulator simply as 25. Now, the number of characters already read in was 2.

Accordingly, the content of the accumulator was multiplied by 10

8

and then divided by 10

10

.

When the decimal point was read, the magic number was loaded into the accumulator where the decimal to

binary conversion was performed . (The period was identi�ed as the decimal point if the working area was

cleared; otherwise, it served as the directive terminator.)

The magic number was 1.193359375 in decimal and 1.001100011 in binary representation. Since all digits

were odd, in the course of multiplication by 10 during the decimal to binary conversion, the sign bit always

remained as 1, i.e. the number seemed negative. And the least signi�cant bit of the magic number was being

shifted to the left 1 bit each time. At the same time, the result of decimal to binary conversion creeped up

from the right.

The input of a long fractional number is terminated by + or -. When the input was terminated, the dummy

multiplication by 10 was repeated until the accumulator became positive, which meant the multiplication

by 10 was executed exactly 10 times. (The program list of R1 is in Appendix D.)

In the diagram below, the magic number for 6 digits is shown and the process of multiplication is attached.

6

The 6 digits magic number is calculated like this. Write down the numbers 2

0

; 2

�1

; 2

�2

; : : : ; 2

�5

. Then

summing up proceeds from the bottom seeing if the result of addition brings the odd digit in the last

position of that number. If the odd digit is produced, add that number; or else skip the addtion of the

number by crossing it out. This brings up the number 1.59375 as shown below.

The magic number for 10 digits

1.0

0.5---

0.25----

0.125

0.0625

0.03125-------

0.015625--------

0.0078125---------

0.00390625

0.001953125 +

1.193359375

1.001100011

The magic number for 6 digits

1.0

0.5

0.25----

0.125-----

0.0625

0.03125 +

1.59375

1.10011

1.10011 = 1.59375

* 1010 (1st)

11.0011

+ 1100.11

1111.1111 = 15.9375

1.1111 = 1.9375

* 1010 (2nd)

11.111

+ 1111.1

10011.011 = 19.375

1.011 = 1.375

* 1 010 (3rd)

10.11

+ 1011

1101.11 = 13.75

to upper right%

%from lower left

1.11 = 1.75

* 10 10 (4th)

11.1

+ 111

10001.1 = 17.5

1.1 = 1.5

* 101 0 (5th)

11

+ 11

1111 = 15

1 = 1

* 1010 (6th)

1

+ 1

1010 = 10

0 = 0

8 Conclusion

The PC-1 played a remarkable role in the research of computer architecture and program library within our

group and helped a lot the research in computational physics and chemistry in the neighbour laboratories.

The preparation of the system programs was quite essential in all activities in and out of the group. In this

paper, some typical techniques used in our system programs were explained.

In retrospect of the research activity of that period of time, the members of the laboratory bene�ted very

much by having our own computer. In these relatively short years, we could learn the whole life cycle

of computer development from the hardware elements to the program library. The home made computer

enabled us to make any experiments in hardware or software that came to mind promptly. The scarceness

of computers around us resulted in the original research in this �eld.

After the fundamental system programs were prepared, more advanced programming systems had been de-

veloped, though I have to say, the PC-1 is too small for such ambitious projects. For instance, introduction

of the symbolic addresses in the initial input routine was tried. This idea was implemented by people of the

chemical department. They used a list mechanism to remember the unsolved symbols until symbol/location

correspondence is settled. The modular arithmetic system came from the idea of Takahasi. In this imple-

mentation, he used wl n operation to obtain the remainder of division by a large prime number. Let A and

R be the contents of the accumulator and the R register respectively and n be the address of the location

which holds h such that 2

35

� h is the prime number with which the division of 2

35

A+R will be made. His

method is to repeat the multiplication with wl n until the accumulator becomes zero. One day, a �lp op of

the PC-1 was connected to a speaker cone and program could push or pull the cone generating a sound. The

sound pitch was controlled by adjusting the shift number of the shift instruction and the sound duration

was controlled by a busy jump facilities of output instruction. It is easy to implement this sort of program

hacking.

A few years later, the design of the next parametron computer was started. But, for this new machine,

PC-2, the initiatives of construction was in the hands of Fujitsu Ltd., it never gave us a big impact as the

PC-1 did. The PC-2 was installed in the common computer room of the Faculty of Science, University of

Tokyo and was used for a while by the community.

Every �ve years, the members of the group who built the machine and maintained the library meet on March

26 to celebrate the birthday of our lovely PC-1.

7

A The Interruption Process Program

The interruption process program is stored in the location 470�511. During the binary to decimal conversion

in the print routine, each time one character code is obtained, instead of output the code directly to the

printer, the code should be placed in the upper 6 bits position of location 470. Then this routine is called

by jumping to 474 using the normal linkage. The code is stored once in a cyclic bu�er and then, when the

printer completed the printing action of the previous character and interrupted, the code will be output to

the printer by this program. The cyclic bu�er must be speci�ed by the preset parameters:

0h = the �rst address of the bu�er,

0n = the size of the bu�er.

Note:

The instructions yl 30 and y 30 sets and resets ip op 30 respectively. This ip op is used to mask the

ready signals from the teletype. When the signal is not masked, it interrupts immediately; if it is masked,

it waits until the mask is turned o� and then interrupts the program.

470 ()

471 ()

472 1 Constant

473 2 Constant

474 yl 30 From code conversion, Prohibit Interruption

475 a 473 gPlant link

476 x 510 g

477 p 470 gWrite the code in

478 t (h) gthe cyclic buffer

479 p 478 gAdvancd the input address

480 a 472 gof the cyclic buffer

486!481 x 478

482 s 490

483 z 485

484 jl 495

483!485 p 487 gReset the address of

486 jl 481 gthe cyclic buffer

487 h The first address of the cyclic buffer

488 () gThe location to save the

489 () gaccumulator

490 n+h The last address of the cyclic buffer + 1

511!491 tl 488 Save the accumulator

502!492 p 495 g

493 s 478 gJump to 508 if buffer is empty

494 z 508 g

507!495 p (h) Read the code to print from the buffer

496 o 505 Print the code if printer is ready

497 p 495 g

498 a 472 gAdvance the output address of

504!499 x 495 gthe cyclic buffer

500 s 490 g

501 z 503 g

502 jl 492 g

501!503 p 487 gReset the address of the

504 jl 499 gcyclic buffer

496!505 p 495

506 s 478 gIf the buffer is full, jump to 495

507 z 495 g

508 pl 488 Restore the accumulator

509 y 30 Reset the interruption prohibit

510 jl () Return to the mail routine

511 jl 491 Entrance to the interruption program

8

B Instruction for use of the basic input routine R0

B.0 Introduction

The PC-1 is a stored program computer and uses the binary system within the machine for the representation

of numbers and addresses. In using the PC-1, the program as well as the numerical data should �rst be

stored in the machine's memory, before computation starts. This may be done, for one thing, by preparing

a tape in which all the instructions and numbers are represented in binary form, and reading in this tape

by pressing down the \initial load switch". However, writing down the instructions and numbers in binary

notation is by no means simple.

The basic input routine \R0" enables the instructions and numbers punched on tape in decimal, alphanu-

meric notation to be read and placed in the PC-1 memory. R0 decodes the teleprinter code of the PC-1

perforator, converts the decimal numbers into binary form, adds the operation codes and places the assem-

bled words in speci�ed locations in the memory. When all the instructions and numbers have been stored,

R0 causes the machine to start the program by transferring control to a speci�ed word in the memory. R0

provides further facilities of turning the relative addresses on tape into absolute addresses, and adding one

or more parameters to the words before they are stored in the memory. Input routine R0 itself occupies the

locations 0�67 of the PC-1 memory and is stored there by placing the binary tape of R0 in the tape reader

and pressing down the \initial load switch".

B.1 Basic Functions

Every instruction of the PC-1 is punched in exactly the same form as it is written in the text. That is,

operation code consisting of letter, either followed or not followed by a letter \l", and followed by a decimal

integer denoting the address, and terminated by a comma, such as a40, x106, pl150, ... Nonsigni�cant

zeroes at the head of the address may be omitted, so that one may punch a40 instead of a0040. Sequence of

instructions punched one after another on tape is normally placed in consecutive locations in the memory.

The location of the �rst instruction in a sequence must be speci�ed by a \directive" in front of the sequence,

which has the form M:, indicating that the sequence should occupy the storage locations M, M+1, M+2, ...

in the memory.

Example: The tape 100: pl150, vl152, sl154, tl156, jl130, causes the memory locations 100 � 104

to be loaded by the following words.

locatoin instruction contents of the memory

100 pl 150 001101100010010110

101 vl 152 001111100010011000

102 sl 154 010100100010011010

103 tl 156 000001100010011100

104 jl 130 011010100010000010

A program tape will consist of one or more sections of such sequences, or subprograms. Blank section of

some ten centimeters should be left at the head of the program tape, and the program should begin with a

\carriage return and line feed" (CR LF), which clears the working positions of R0 prior to reading essential

information.

The complete program should end with a control code jlM. (terminated by a period \."), which stops the

operation of R0 and starts the program by causing the control to be transferred to the location M.

Notes: 1. When the address is 0, this may altogether be omitted, for example, \jl0" may be written

simply as \jl".

2. It is preferable to leave a short blank section in front of each section of the program, and to

punch a CR LF at the beginning of each. This serves the purpose of easy identi�cation of the subprograms

and also it enables the reloading of some part of the program by manually transferring control to the location

0.

3. R0 ignores \blank" symbols.

4. \Erase" symbol is not ignored by R0, so that mispunched characters overpunched by 6 holes

should be removed in the tape-editing stage.

B.2 Input of Intergers

Input of numbers occurs just as the input of instructions, that is, the number is regarded as if it were an

instruction without operation code, or with the operation code \0" (blank tape). Any positive integer N

(0�N<2

17

) can be read in by punching N in decimal notation and terminating by a comma \,".

9

Ex. 150: 12345, causes an integer 12345, or a fraction 12345�2

�17

to be stored in memory

location 150.

Negative integers �N can be read in by punching an integer 2

18

�N, where 0<N�2

17

.

Ex. �2 can be read in by punching 262142,.

Long numbers are usually regarded as pairs of short positive integers (N

1

, N

2

) in the form

2

18

N

1

+N

2

. This is the standard way of reading in the numerical constants in library subrou-

tines.

Note: For input of numerical data as well as constants in programs specially drawn up by the user, this

would be quite inconvenient, and a universal input auxiliary routine R1 will be used for reading in signed

long numbers, either integral or fractional. For input of signed, short numbers, R3 may be used instead of R1.

B.3 Relative Addresses

R0 o�ers an ample facility of using the preset parameters in the instructions and constants. Namely, any

number of alphabets can be written as code letters in a word, except at the head, in which case it is

interpreted as the operation code. Each code letter causes a number (a parameter), speci�ed by a precursor

tape, to be added to the word before it is stored in the memory. Actually, the speci�ed parameter values for

these code letters are stored in the storage locations 57�87, but in general, the programmer is supposed to

have no knowledge of exact storage locations for individual code letters.

There are several code letters that are reserved for speci�c purposes and cannot be assigned arbitrary values

by the programmer. These are:

l

t

r

=2048 (=2

11

), used to indicate \long" instructions.

=tM (M is the current address of the storage location where the word is to be stored).

=M

o

: the storage location of the �rst wored of the current sequence of instructions. This is

assigned by the directive M

o

:.

\LF" punched as a code letter is an erase symbol and serves the purpose of canceling the characters within

the same word already read from tape. This function of LF is made use of by the CR LF at the head of the

tape to insure uniform initial state in the operation of R0.

Setting the values to the code letters is done by a tape of the following form: e.g.

0h=131072, 0m=18, 0a=256, ...

using a new control symbol \=". Another way of setting the code letters is of course by storing these values

by ordinary directives, e.g.

61:131072, 63:18, 80:256, ...

but this is inconvenient since it requires a precise knowledge of memory locations for individual code letters.

Notes:

1. Teleprinter control characters (\space"(SP), \upper case"(UC), \lower case"(LC), \carriage

return"(CR) and \line feed"(LF) are treated by R0 as letters. Hence, these characters punched at the head

of a word (that is, next to a terminating symbol) are regarded as (�ctitious) operation codes. These symbols

(except LF) punched in positions other than the head of a word is interpreted as code letters, and can in

principle be used as variable code letters, except CR, the corresponding memory location for which is used

by an instruction in R0. However, using teleprinter control characters as code letters is not recommended.

2. Code letters o and g are set to 28 and 68 respectively, usless otherwise speci�ed (see next

section). SP, h, m and n are set to zero by R0 tape.

3. Initial 0 in 0h=131072, only serves the purpose of making the letter h to be interpreted as a

code letter, and hence can be replaced by any other letter or teleprinter control symbol.

4. Setting of parameter values using \=" symbol destroys the current store address, in case it is

done between program sections.

B.4 Use of Code Letters

The directive M: sets the code letter r automatically to M, the location of the �rst word in the current

sequence of instructions, and hence any word within the same sequence can be referred to by relative

address by use of this code letter, e.g.

jl1r,

means jumping to the second instruction in the same section of the program.

The code letter t is actually the instruction to store the assembled word to ultimate place in the memory,

and hence its values is always equal to tN, where N is the current destination of the word. Hence this code

letter can be used to refer to the word itself, e.g.

it becomes pM (i+t=p)

gt becomes iM (g+t=i)

10

tllt becomes oM (tllt+t=o)

where these words are supposed to be placed in location M. Use of code letter t for purposes other than the

above is not recomended.

A standard use of variable code letters is to indicate the location of the �rst word in each subroutine, e. g.

instead of

116: program of print routine ,

we punch at the head of the complete program tape

0p=116: ...

and the subroutine tape begins with

0p: program of print routine ,

so that this closed subroutine can be called in by an instruction pair

it, jlp, instead of it, jl116,.

This use of code letters greatly simpli�es the use of library subroutines. The code letter o is used to refer

to the storage location 28 which is used to store the independent variable in some closed subroutines. The

code letter g(= 68) is used to refer to the working spaces of all kinds of program. However, the numerical

value of either o or g can be modi�ed for the programmer's convenience.

Code letters may appear in the directives as well as in instructions. It may also be used in setting of variable

code letters, e.g.

0a=116, 0b=28a, 0c=36b,

is equivalent to 0a=116, 0b=144, 0c=180, and jla. has the same e�ect as jl116.

B.5 Special Directives

0t: This sets the r-parameter equal to the current store address.

0r: This causes the following instructions to be stored starting in the storage location speci�ed by

the previous directive.

Nr: This causes the following instructions to be stored starting in the N-th storage location of the

preceding section of the program.

Nt: This causes the following instructions to be stored in a new location, skipping N storage location

next to the preceding program.

0t:0h=0r, This sets the parameter h equal to the current store address. (0h=0t, is unacceptable

since the symbol \=" destroys the store instruction.) This combination is placed before a subroutine

having directive 0h:, to place it next to the end of preceding program. (h may be replaced by any

other variable code letter.)

B.6 Control Code with \."

tN. (kN., zN.) Stores the following program starting in the location N, without resetting the r-

parameter.

Nt. Stores the following program in a new location skipping N storage location next to the preceding

program.

N. Stops tape. When the machine is restarted, the following program is stored starting in the

location N.

tNt. Stops tape. When the machine is restarted, the following program is stored skipping N storage

locations.

tt. Special case of tNt. Stops the tape without destroying the current store address.

8. Stops tape. When the machine is restarted by inital start key, the following program is stored

starting in the current storage locations. (analogous to tt. in e�ect.)

t57.jl,zN. Replaces the store instruction by jlN, that is, transfers control to the word at N, leaving

the word following in tape in the accumulator. Successive words will be read one by one and placed in

the accumulator, each time R0 is called in, transferring control to the same word. (This is used when

input of one word is called for during program.)

11

t57. Used to restore the operation part of the store instruction to the original one (t), in case it

has been modi�ed (to, say, jl).

t57.o56,X,t57. Print the letter X without disturbing the memory. (When more than one letter is

to be printed, it is recommendd to use an interlude. See below.)

B.7 Input During Program

Although R0 is primarily designed for the input of the program, it is also suitable for such purposes as

reading in numerical values called for by program a few at a time. A slight modi�cation on R0 will make it

still more adaptable for such uses.

If R0 is called for by jl40 in a program, the last current store address remains unaltered. If it is called for

by jl55, the current contents of the accumulator replace the current store address, so that the word read

can be stored in locations speci�ed by the program.

Exit from R0 may be made in the usual way by punching jlN. at the end of the number sequence. However,

it is more convenient to provide for the exit by means of some unused symbol. In case R1 is not used, either

\+" or \-" symbol may be used to send control to a location N. This is done by replacing the word in 32 or

26 respectively by a pseudo-instruction (212980+N). CR and LF can also be very conveniently used for the

exit from R0. This is e�ected by 23:jlN,.

Using the input routine thus modi�ed, it is also possible to terminate a number by CR and LF, in which case,

the number is left in 0oL (28L) as a long integer.

Note: The original program of R0 sets the machine to dynamic stop on reading + or -.

B.8 Interlude

It is sometimes useful to do some simple operations, such as calculating constants used in the main program,

printing table heading, etc. by temporarily placing a short program in the memory and transferring control

to this program, before the main program has been stored. This type of program is called the interlude. At

the end of an interlude, control should be transferred to R0 by, say, jl40, and subsequent program is usually

written over the interlude, so that no extra space need be reserved for it. Following are examples of short

programs that are often used as interludes.

1.

2.

3.

0t:c49,jl4,jlr.:

This has the e�ect of increasing the current store address by one, if it is odd, and hence

may be placed before an even subroutine in order to make sure that the location of the �rst

word be even.

0t:s,o1r,l2,o3r,jl6r,jlr.:

This causes carriage return and line feed to occur during input.

0t:ir,zl40,o2r,jlr,jlr.:

This causes the contents of the tape following it to be copied directly by the teleprinter,

and may be used to print relevant information concerning the program, e.g. table heading.

Blank tape at the end sends control back to R0.

C The Initial Input Routine R0

Location Order Notes

38!0 al 28 Decimal to binary conversion

1 jl 49

2 0 Constant

3 (0) Temporary storage for binary number

25!4 a 64 Add function

45!5 t 64 Store function and parameter

52,7!6 i 6 Read code, number or symbol

7 zl 6 Jump if blank

46!8 rl 12 Shift teletype code to address part

9 kl 20 Jump if code letter

10 a 33 Add address base

11 x 12 Assemble load order

12

12 p (0) Load number or base order

13 kl 34 Jump if number

14 a 47 Modify base order into switch order

18!15 t 18 Set switch order

16 p 29 Load address

17 a 64 Add function and parameter

18 (0) switch order(jl18,jl57,jl15,x66,p24)

19 jl 55 Jump to "set transfer order"

9!20 a 33 Add address base

21 x 24 Assemble load order

22 s 4 Examine whether code letter is LF

23 z 40 Jump to clear order in case of LF

24 p (0) Load parameter

25 jl 4 (4) Jump to "add function" order

26 *s 6 (-) Base order for "jl 18" (* means 1 in sign bit)

27 SP 8 (8) Constant, function part is SP

28 (0) gWorking space for

29 (0) gdecimal to binary conversion

30 *s 45 (,) Base order for "jl 57"

31 *s 3 (.) Base order for "jl 15"

32 *s 6 (+) Base order for "jl 18"

33 CR 56 Address base, function part is CR

13!34 x 3 (3) Store binary number

35 pl 28 g

36 rl 7 (7) gDecimal to binary conversion

37 ll 9 (9) g

38 jl 0

39 *el 54 (:) Base order for "x 66"

56,23!40 p 2 (2) Load 0

41 tl 28 Clear working space for conversion

42 t 64

44!43 i 43 Read function, number or symbol

44 zl 43 Jump if blank

45 kl 5 (5) Jump if function letter

46 jl 8

47 *nl 12 (=) Base order for "p 24"

48 r 0 (0)

1!49 l 1 (1) g

50 al 2 gDecimal to binary conversion

51 tl 28 g

52 jl 6 (6)

58!53 p 57

54 a 49 Increase "transfer order"

19!55 x 57 Set "transfer order"

56 jl 40 (Blank) Jump to clear order

18!57 t (67) (t) Transfer order

58 jl 53 (CR)

59 28 (o) o-parameter

60 0 (SP)

61 0 (h) h-parameter

62 parity (n) n-parameter

63 digit (m) m-parameter

64 (0) (LF) Working space for function and parameters

65 2048 (l) l-parameter for long word order

66 (0) (r) r-parameter

67 68 (g) g-parameter, End of tape

May 1, 1958

E. Wada

13

D Read Subroutine R1

R1 Input of Signed Long Integers and Decimal Fractions

Special; even; 28 storage locations (normally 88{115);

used with initial input routine R0.

R1 is used to read in long integers and decimal fractions of either sign into successive long storage locations

in the memory. During the reading in of R1, the initial input routine is slightly modi�ed so as to enable

use of the control symbols \+" and \-" during its operation. With this routine, any number less than 2

35

followed by a \+" will be read as a positive integer, and any number followed by a \-" as a negative integer.

Numbers exceeding this limit will be interpreted modulo 2

36

. If the number is preceded by a decimal point

with or without a zero (\0." or \.") and followed by a sign it will be read in as a decimal fraction of that

sign. Any number of digits up to 10 may follow the decimal point. For instance, 2

�1

can be punched .5+ or

0.5+ instead of .5000000000+, but punching more than 10 digits will give incorrect result.

Long numbers and short words may appear mixed on the tape and they are stored successively in their

natural order on the tape, but the location of long numbers must always be such that they are stored in

even storage locations. Control symbols \+" and \-" cause storage address of the number to be increased

by 2. Hence no extra \," should be placed after long numbers. No code letter nor function symbol can be

used with long numbers.

88:

18!0 zl 2r g decide whether the symbol just read is a decimal point

1 jl 15 gor a control symbol. If the latter, jump to 15

0r!2 p 4r place the "magic number" in 28 and 64

3 jl 41 (by 41 and 42 of R0)

4 156416 "magic number" 1.193359375

5 nl 28

18!6 p 12r place "pl 28" in 23r on reading "+"

7 jl 9r

18!8 p 5r place "nl 28" in 23r on reading "-"

7r!9 t 23r place " pl 28", "nl 28" in 23r.

10 p 64 gtest whether an integer or a fraction

11 kl 19r g by reading C(64)

12 pl 28 g test whether multiplied

13 kl 17r g 10 times

16r!14 v 48 gMultiply by 10 up to ten times

15 ll 5

16 k 14r

13r!17 dl 26r Divide by 10

10

18 tl 28

11r!19 p 57

20 x 24r Set store order for long number

21 a 40 Increase address of store order

22 x 57 by 2

23 () Becoms "pl 28" or "nl 28" depending on sign

24 tl () g Store a long number in ultimate

25 jl 40 gstorage location

26 38146 g10

10

27 254976 g

t 26.

212988r (-) jl 8r

t 31.

212980r (.) jl r

212986r (+) jl 6r

28r.

E Print Subroutine P2

P2 Print one signed decimal in 0oL (without layout or round o�)

Closed; Self setting; 36 storage locations;

Time is determined by typing speed.

Prints the signed number in 0oL to H places of decimals, leaving R�10

H

in R register where R is the re-

14

mainder. H is determined by a preset parameter. Each number is preceded by a decimal point and followed

by a sign.

Preset parameter:

0h = H Number of digits to be printed.

Notes:1. For example, 0 is printed, if H is 10, as

.0000000000+

and �0:5 as

.5000000000-

�1 will be printed as

.0000000000-

2. Before P2 is called in, digit position r

0

must be cleared.

3. The output tape perforated by P2 less than ten digits may be used as an input tape for use with R1.

In this case, however, no space should be placed between numbers.

0p:

0 a 12r

1 CR t Print a decimal point

2 x 35r Plant link

3 pl o gLoad the number in

4 rl 35 gR register

5 kl 18r Test sign

6 nl o Change sign

7 rl 35 Load the number in R register

8 p 9r

9 jl 19r

10 139264 420000

8

g

11 143360 430000

8

g

12 j 2 g

13 s 10�2

-4

gTable of

14 g () Counter gcharcters

15 LTRS h g

16 155648 460000

8

g

17 f 10r Base order g

5r!18 p 22r Store address to select g

9r!19 x 33r a code of sign g

20 p 15r

32r!21 x 14r Store counter

22 q 22r Shift the number to acc.

23 v 13r gMultiply by 10�2

-17

24 rl 13 g

25 a 17r Add base order

26 x 27r gSelect the code

27 a () g

28 CR t Print a digit

29 rl 18 Store fraction in R register

30 a 14r Subtract 1 from counter

31 z 33r Test count

32 jl 21r

33 a () gPrint sign

34 CR t g

35 jl () Link

References

[0] H. Takahasi ed: Parametron Computers, Iwanami Shoten, 1968. (in Japanese)

[1] M. V. Wilkes, D. J. Wheeler and S. Gill: The Preparation of Programs for an Electronic Digital

Computer. Addison-Wesley Press, Inc. 1951.

[2] D. Knuth: The Art of Computer Programming, vol 2, Seminumerical Algorithms, 3rd ed. p. 291.

[3] H. Takahasi and E. Goto: Application of Error Correcting Codes to Multiway Switching, UNESCO

International Conference on Information Processing (Paris 1959) G 2.9.

15

