Internet Measurement and Data Analysis (2)

Kenjiro Cho

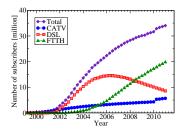
2011-10-05

review of previous class

theme of the class

- looking at the Internet from different views
 - learn how to measure what is difficult to measure
 - learn how to extract useful information from huge data sets

Class 1 Introduction

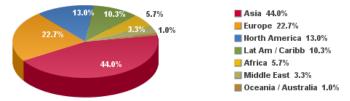

- network measurement and Internet measurement
- network management tools
- exercise: introduction of Ruby scripting language

Measuring the size of the Internet

- the number of users and hosts
- the number of web pages
- precision, errors, significant digits
- how to make good graphs
- exercise: graph plotting by gnuplot

the number of Internet users in Japan

- ▶ MIC's survey on communications (総務省 通信利用動向調査)
 - ▶ 94.6 million users, population penetration 78.2% (end of 2010)
 - survey by random sampling and questionnaire
 - stratified random sampling with regions and town sizes
 - household survey: 45,120 households, 22,271 valid responses
 - total households 53.4 million (2010/03)
- MIC broadband service subscribers
 - reported by communication service providers
 - number of service subscribers: 35.5 million (2011/06)

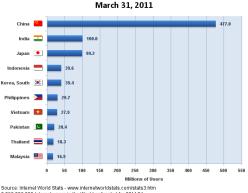


source: MIC broadband service subscribers in Japan

the number of Internet users in the world

2,095 million, population penetration 30.2% (2011/03)

Internet Users in the World Distribution by World Regions - 2011


Source: Internet World Stats - www.internetworldstats.com/stats.htm Basis: 2,095,006,005 Internet users on March 31, 2011 Copyright © 2011, Miniwatts Marketing Group

source: Internet World Stats http://www.internetworldstats.com/

the number of Internet users in Asia

 China (by far the top): 477 million, population penetration 36.3% (2011/03)

Asia Top Internet Countries

Source: Internet World Stats - www.internetworldstats.com/stats3.h 2,095,006,005 Internet users in the World estimated for 2011Q1 Copyright © 2011, Miniwatts Marketing Group

source: Internet World Stats http://www.internetworldstats.com/

the number of devices connected to the Internet

what is the definition of "connected to the Internet"?

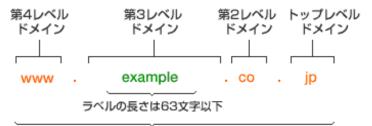
- can access data on the Internet
 - browse web pages
 - e-mail reachable
 - it is difficult to count the number
 - 2011: mobile phone subscribers: 5.3 billion
 - ► IDC report: worldwide PC shipments in 2010: 347 million
- communicate over IP protocols (including devices behind NATs)
- with global IP addresses (bi-directional access over IP)

measuring the number of computers on the Internet

goals

- to know the number of computers on the Internet
 - became difficult due to the prevailing use of NAT boxes
- to understand the usage of IP addresses
 - IP addresses are limited resources
 - inputs for IP address assignment policies
 - IPv4 addresses exhaustion

methods

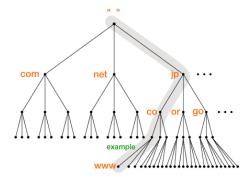

- full search of the DNS name tree
- ▶ full search of the IP address space (2³²)
- sampling for inferring the usage
 - difficult due to different usage of different address blocks

Domain Name System (DNS) basics (1/3)

from JPNIC 「ドメイン名のしくみ」

http://www.nic.ad.jp/ja/dom/system.html

ドメイン名の構成

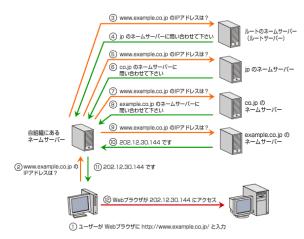

ドメイン名全体の長さは255文字以下

source : JPNIC

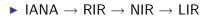
Domain Name System (DNS) basics (2/3)

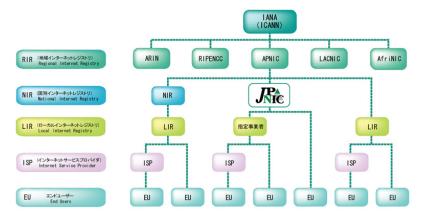
structure of DNS

- ▶ a tree structure with "root" at the top
- each domain has "name servers" for managing the distributed database
 - manages mapping of domain names and IP addresses within the domain
 - also manages references to name servers of sub-domains



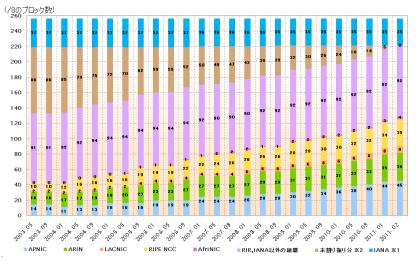
domain name space (source: JPNIC)


Domain Name System (DNS) basics (3/3)


name resolution in DNS

- name resolution: from a domain name to the corresponding IP address
 - reverse lookup: from IP address to domain name (using the reverse tree)

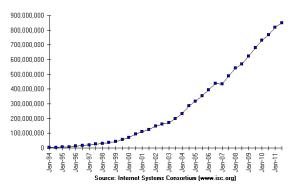
IP address assignment management



hierarchical management of IP addresses (source: JPNIC)

exhaustion of IPv4 addresses

- 2011/2/1 exhaustion of IANA address pool
- ▶ 2011/4/15 exhaustion of APNIC and JPNIC address pool



IP address assignment status by RIR (source: JPNIC)

classical method to infer host count

The ISC Domain Survey (inference from DNS)

850 million hosts (2011/07)

Internet Domain Survey Host Count

source: ISC domain survey http://www.isc.org/solutions/servey

The ISC Domain Survey

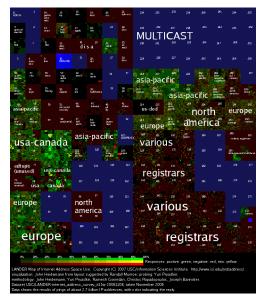
measurement method

- ▶ 1987-1997: count hosts registered in DNS (RFC1296)
 - parse the DNS delegation tree, and obtain zone data from each zone
 - count "A records" in a zone data
 - for zones prohibiting zone transfer, calibrate the count using the success ratio of zone transfer
- ▶ 1998-: count unique IP addresses registered in DNS
 - ▶ parse the reverse DNS tree, and find existing /24 blocks
 - for each /24 block found, reverse look up "PTR record" for all the IP addresses (1-254) in the block
 - existence of a PTR record doesn't mean existence of a host. randomly sample 1% of the found addresses, ping these addresses, and use the success ratio for calibration

limitations

- cannot count hosts which are not registered in DNS
- cannot know the accuracy of the calibration method
- cannot count hosts behind NATs

exhaustive search of IP address space


- Heidemann's measurement in 2006/11
- ping all the assigned IP addresses
- ▶ 93% of probed addresses did not respond (firewall, etc)
- ▶ a new probe is installed at SFC (2011/08)

address type	number	% of addrs	% of probed
IPv4 addresses	4,290M	100%	
reserved	1,160M	27%	
allocated	3,140M	73%	
unprobed (mcast, etc)	342M	8%	
probed	2,800M	65%	100%
replies	187M	4.4%	6.7%
positive replies	103M	3.6%	3.7%
negative replies	84M	2.0%	3.0%
non-replies	2,610M	61%	93%

J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G. Bartlett, J. Bannister. Census and survey of the visible Internet.

ACM IMC'08. pp169-182. Vouliagmeni, Greece. October 2008.

visualization of IP address usage

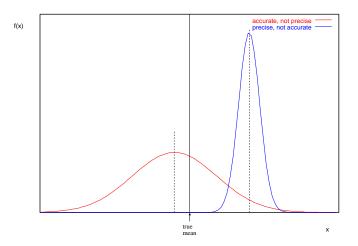
http://www.isi.edu/ant/address/

visualization of IP address usage (cont'd)

visualization technique

- IP address space visualized by Hilbert Curve (keep adjacency, recursive)
- each point shows mean of a /16 block (64k addrs)
- positive:green, negative:red, mix:yellow

1D: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2D:
$$\begin{array}{c} 0 \\ 1 \\ 2 \\ 2 \\ 4 \\ 5 \\ 6 \end{array}$$


Hilbert Curve

the number of web pages

- definition of "web page"? increasing dynamic pages (calendar, etc)
- data can be collected by crawling robots
 - start from popular sites, follow links
- existing large search systems have data but they are not published
- netcraft: web server survey 227 million sites in 2010/09
- ▶ google: indexed 1 trillion (10¹²) unique URLs in 2008
 - http://googleblog.blogspot.com/2008/07/ we-knew-web-was-big.html

accuracy, precision and errors

accuracy: how close to true value precision: uncertainty in data error: difference from true value, range of uncertainty

various errors

measurement errors

- systematic errors (if conditions are identified, errors could be corrected)
 - instrument error, procedural error, personal bias
- random errors (noise: accuracy can be improved by repeating measurement)

calculation errors

- ▶ round-off errors (丸め誤差)
- ▶ truncation errors (打ち切り誤差)
- ▶ loss of trailing digits (情報落ち)
- ▶ cancellation of significant digits (桁落ち)
- ▶ propagation of error (誤差の伝搬)

sampling errors

- when sampling is used, true value is usually unknown
- sampling errors: errors in estimating population characteristics

significant digits

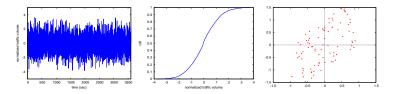
significant digits of "1.23" is 3 (1.225 \leq 1.23 < 1.235) expressions

expressions	significant digits	
12.3	3	
12.300	5	
0.0034	2	
1200	4	(vague, 1.200×10 ³)
2.34×10^4	3	· - ,

arithmetic

- use all the available digits during calculation
 - for manual calculation, use one more digit
- apply the significant digits to the final value

basic rules


- addition/subtraction: use the smallest number of decimal places
 - ▶ $1.23 + 5.724 = 6.954 \Rightarrow 6.95$
- multiplication/division: use the smallest number of significant digits
 - $\blacktriangleright \ 4.23 \times 0.38 = 1.6074 \Rightarrow 1.6$

computational precision of computers

- integer (32/64bits)
 - 32bit signed integer (up to 2G)
- 32bit floating point (IEEE 754 single precision): significant digits:7
 - sign:1bit, exponent:8bits, mantissa:23bits
 - ▶ 16,000,000 + 1 = 16,000,000!!
- 64bit floating point (IEEE 754 double precision): significant digits:15
 - sign:1bit, exponent:11bits, mantissa:52bits

graph plotting

create a set of plots using statistical techniques to intuitively understand the data

guidelines for plotting

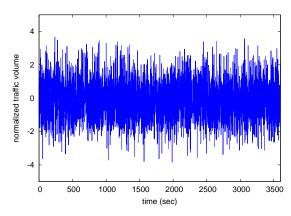
require minimum effort from the reader

- label the axes clearly
- label the tics on the axes
- identify individual curves/bars
- select appropriate font size
- use commonly accepted practices
 - zero-origins, math symbols, acronyms
- show variation/distribution of variables
- select ranges properly
- do not present too many items in a single chart
- when comparing data sets, use appropriate normalization
- when comparing plots, use the same scale for the axes
- when using colors
 - make sure it is readable in black-and-white print
 - make sure readable on data projectors (e.g., do not use yellow)

variables in data

- univariate analysis
 - explores a single variable in a data set, separately
- multivariate analysis
 - looks at more than one variables at a time

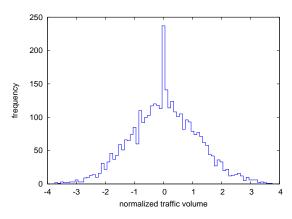
plotting raw data


- time series plots
- histograms
- probability plots
- scatter plots

there are many other plotting techniques

time series plots

time-series plots (or other sequence plots) provides a feel for the data $% \left({{{\left[{{{\left[{{{\left[{{{c}} \right]}} \right]_{{\rm{c}}}}} \right]}_{{\rm{c}}}}_{{\rm{c}}}} \right)} \right)$


- you can identify
 - shifts in locations
 - shifts in variation
 - outliers

histograms

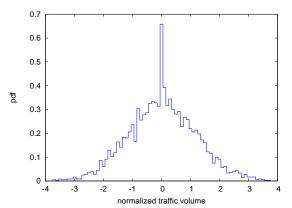
to see distribution of the data set

- split the data into equal-sized bins by value
- count the frequency of each bin
- plot
 - X axis: variable
 - Y axis: frequency

histograms (cont)

with histograms

- you can identify
 - center (i.e., the location) of the data
 - spread (i.e., the scale) of the data
 - skewness of the data
 - presence of outliers
 - presence of multiple modes in the data


limitations of histograms

- needs appropriate bin size
 - too small: each bin doesn't have enough samples (e.g., empty bins)
 - too large: only few regions available
 - difficult for highly skewed distribution
- enough samples needed

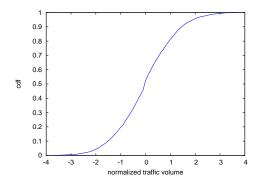
probability density function (pdf)

- normalize the frequency (count)
 - sum of the area under the histogram to be 1
 - divide the count by the total number of observations times the bin width

probability density function: probability of observing x

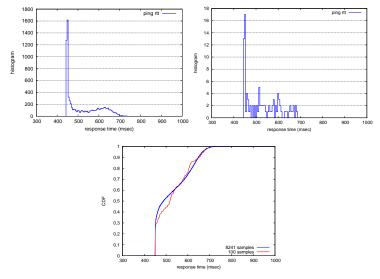
$$f(x) = P[X = x]$$

cumulative distribution function (cdf)


density function: probability of observing x

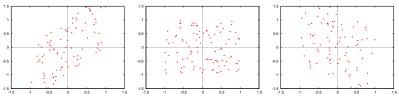
$$f(x) = P[X = x]$$

 cumulative distribution function: probability of observing x or less


$$F(x) = P[X <= x]$$

 better than histogram when distribution is highly skewed, sample count is not enough, or outliers are not negligible

histogram vs cdf


no need to worry about bin size or sample count for cdf

original data (left), 100 samples (right), cdfs (bottom)

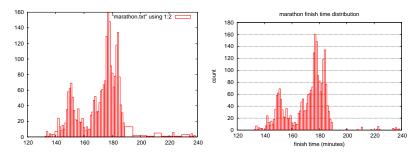
scatter plots

- explores relationships between 2 variables
 - X-axis: variable X
 - Y-axis: corresponding value of variable Y
- you can identify
 - whether variables X and Y related
 - no relation, positive correlation, negative correlation
 - whether the variation in Y changes depending on X
 - outliers
- examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative correlation -0.5 (right)

examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative correlation -0.5 (right)

plotting tools

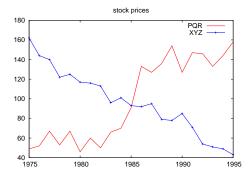
gnuplot


- command-line tool suitable for automated plotting
- http://gnuplot.info/
- grace
 - comes with graphical user interface
 - powerful for fine-tuning the output
 - http://plasma-gate.weizmann.ac.il/Grace/

exercise: gnuplot

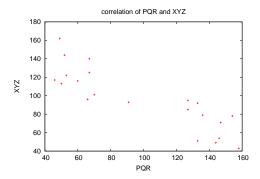
- plotting a simple graph using gnuplot
- sample data from a book: P. K. Janert "Gnuplot in Action"
 - http://web.sfc.keio.ac.jp/~kjc/classes/ sfc2011f-measurement/marathon.txt
 - http://web.sfc.keio.ac.jp/~kjc/classes/ sfc2011f-measurement/prices.txt

histogram


```
b distribution of finish time of a city marathon
plot "marathon.txt" using 1:2 with boxes
make the plot look better (right)
set title "marathon finish time distribution"
set boxwidth 1
set xlabel "finish time (minutes)"
set ylabel "count"
set yrange [0:180]
set grid y
plot "marathon.txt" using 1:2 with boxes notitle
```


time-series plot

stock prices over time: PQR and XYZ


```
set title "stock prices"
plot "prices.txt" using 1:2 title "PQR" with lines, \
"prices.txt" using 1:3 title "XYZ" with linespoints linetype 3
```


scatter plot

correlation of stock prices: PQR and XYZ

```
set title "correlation of PQR and XYZ"
set xlabel "PQR"
set ylabel "XYZ"
plot "prices.txt" using 2:3 notitle with points
```


Measuring the size of the Internet

- the number of users and hosts
- the number of web pages
- precision, errors, significant digits
- how to make good graphs
- exercise: graph plotting by gnuplot

Class 3 Data recording and log analysis (10/12)

- data format
- log analysis methods
- exercise: log data and regular expression