
Internet Measurement and Data Analysis (6)

Kenjiro Cho

2011-11-02

schedule change

I Class 9 Measuring traffic of the Internet (11/18, Friday)
9:25-10:55 e11

I Class 10 Hot topics (11/18, Friday) 11:10-12:40 e11

I Class 11 Measuring time series of the Internet (11/30)

I NO Class (12/7)

2 / 32

review of previous class

Class 5 Measuring the structure of the Internet

I Internet architecture

I network layers

I topologies

I graph theory

I exercise: topology analysis

3 / 32

today’s topics

Class 6 Measuring the characteristics of the Internet

I delay, packet loss, jitter

I correlation and multivariate analysis

I principal component analysis

I exercise: correlation analysis

4 / 32

measurement metrics of the Internet

measurement metrics

I link capacity, throughput

I delay

I jitter

I packet loss rate

methodologies

I active measurement: injects measurement packets (e.g., ping)
I passive measurement: monitors network without interfering in

traffic
I monitor at 2 locations and compare
I infer from observations (e.g., behavior of TCP)
I collect measurements inside a transport mechanism

5 / 32

delay measurement

I delay components
I delay = propagation delay + queueing delay + other overhead
I if not congested, delay is close to propagation deley

I methods
I round-trip delay
I one-way delay requires clock synchronization

I average delay
I max delay: e.g., voice communication requires < 400ms
I jitter: variations in delay

6 / 32

some delay numbers

I packet transmission time (so called wire-speed)
I 1500 bytes at 10Mbps: 1.2msec
I 1500 bytes at 100Mbps: 120usec
I 1500 bytes at 1Gbps: 12usec

I speed of light in fiber: about 200,000 km/s
I 100km round-trip: 1 msec
I 20,000km round-trip: 200msec

I satellite round-trip delay
I LEO (Low-Earth Orbit): 200 msec
I GEO (Geostationary Orbit): 600msec

7 / 32

packet loss measurement

packet loss rate

I loss rate is enough if packet loss is random...
I in reality,

I bursty loss: e.g., buffer overflow
I packet size dependency: e.g., bit error rate in wireless

transmission

8 / 32

pingER project

I the Internet End-to-end Performance Measurement (IEPM)
project by SLAC

I using ping to measure rtt and packet loss around the world
I http://www-iepm.slac.stanford.edu/pinger/
I started in 1995
I over 600 sites in over 125 countries

9 / 32

pingER project monitoring sites

I monitoring (red), beacon (blue), remote (green) sites
I beacon sites are monitored by all monitors

from pingER web site

10 / 32

pingER project monitoring sites in east asia

I monitoring (red) and remote (green) sites

from pingER web site

11 / 32

pingER packet loss

I packet loss observed from N. Ameria

I exponential improvement in 10 years

from pingER web site

12 / 32

pinger minimum rtt
I minimum rtts observed from N. America
I gradual shift from satellite to fiber in S. Asia and Africa

from pingER web site

13 / 32

variables in data set

I univariate analysis
I explores a single variable in a data set, separately

I multivariate analysis
I looks at more than one variables at a time

I enabled by computers
I finding hidden trends (data mining)

14 / 32

scatter plots
I explores relationships between 2 variables

I X-axis: variable X
I Y-axis: corresponding value of variable Y

I you can identify
I whether variables X and Y related

I no relation, positive correlation, negative correlation
I whether the variation in Y changes depending on X
I outliers

I examples: positive correlation 0.7 (left), no correlation 0.0
(middle), negative correlation -0.5 (right)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative

correlation -0.5 (right)

15 / 32

correlation
I covariance:

σ2
xy =

1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

I correlation coefficient:

ρxy =
σ2

xy

σxσy
=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

I correlation coefficient: the covariance of 2 variables
normalized by their product of their standard deviations, a
value between −1 and +1 inclusive.

I sensitive to outliers. so, you should use a scatter plot to
observe outliers.

I correlation and causality
I correlation does not imply causal relationship

I third factor C causes both A and B
I coincidence

16 / 32

correlation and multivariate analysis

multivariate analysis: statistical methods to analyze more than one
variable at a time

I visualization of relationship
I cluster analysis: calculate distance (or similarity) between

variables, and assign the variables into groups (or clusters)

I demensionality reduction
I principal component analysis: a technique to reduce the

number of variables

17 / 32

principal component analysis; PCA
purpose of PCA

I convert a set of possibly correlated variables into a smaller set
of uncorrelated variables

PCA can be solved by eigenvalue decomposition of a covariance
matrix
applications of PCA

I demensionality reduction
I sort principal components by contribution ratio, components

with small contribution ratio can be ignored

I principal component labeling
I find means of produced principal components

notes:
I PCA just extracts components with large variance

I not simple if axes are not in the same unit

I a convenient method to automatically analyze complex
relationship, but it does not explain the complex relationship

18 / 32

PCA: intuitive explanation
a view of cordinate transformation using a 2D graph

I draw the first axis (the 1st PCA axis) that goes through the
centroid, along the direction of the maximal variability

I draw the 2nd axis that goes through the centroid, is
orthogonal to the 1st axis, along the direction of the 2nd
maximal variability

I draw the subsequent axes in the same manner

For example, “height” and “weight” can be mapped to “body
size” and “slimness”. we can add “sitting height” and “chest
measurement” in a similar manner

x1

x2

y2
y1

19 / 32

PCA (appendix)
principal components can be found as the eigenvectors of a covariance matrix.
let X be a d-demensional random variable. we want to find a dxd orthogonal transformation matrix P that convers
X to its principal components Y.

Y = P>X

solve this equation, assuming cov(Y) being a diagonal matrix (components are independent), and P being an

orthogonal matrix. (P−1 = P>)
the covariance matrix of Y is

cov(Y) = E[YY>] = E[(P>X)(P>X)>] = E[(P>X)(X>P)]

= P>E[XX>]P = P>cov(X)P

thus,

Pcov(Y) = PP>cov(X)P = cov(X)P

rewrite P as a dx1 matrix:

P = [P1, P2, . . . , Pd]

also, cov(Y) is a diagonal matrix (components are independent)

cov(Y) =

2

6

6

4

λ1 · · · 0

.

.

.
. . .

.

.

.
0 · · · λd

3

7

7

5

this can be rewritten as

[λ1P1, λ2P2, . . . , λdPd] = [cov(X)P1, cov(X)P2, . . . , cov(X)Pd]

for λi Pi = cov(X)Pi , Pi is an eigenvector of the covariance matrix X
thus, we can find a transformation matrix P by finding the eigenvectors.

20 / 32

previous exercise: Dijkstra algorithm
I read a topology file, and compute shortest paths

% cat topology.txt

a - b 5

a - c 8

b - c 2

b - d 1

b - e 6

c - e 3

d - e 3

c - f 3

e - f 2

d - g 4

e - g 5

f - g 4

% ruby dijkstra.rb -s a topology.txt

a: (0) a

b: (5) a b

c: (7) a b c

d: (6) a b d

e: (9) a b d e

f: (10) a b c f

g: (10) a b d g

%

21 / 32

previous exercise: sample code (1/4)

dijkstra’s algorithm based on the pseudo code in the wikipedia

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

#

require ’optparse’

source = nil # source of spanning-tree

OptionParser.new {|opt|

opt.on(’-s VAL’) {|v| source = v}

opt.parse!(ARGV)

}

INFINITY = 0x7fffffff # constant to represent a large number

22 / 32

previous exercise: sample code (2/4)
read topology file and initialize nodes and edges

each line of topology file should be "node1 (-|->) node2 weight_val"

nodes = Array.new # all nodes in graph

edges = Hash.new # all edges in graph

ARGF.each_line do |line|

s, op, t, w = line.split

next if line[0] == ?# || w == nil

unless op == "-" || op == "->"

raise ArgumentError, "edge_type should be either ’-’ or ’->’"

end

weight = w.to_i

nodes << s unless nodes.include?(s) # add s to nodes

nodes << t unless nodes.include?(t) # add t to nodes

add this to edges

if (edges.has_key?(s))

edges[s][t] = weight

else

edges[s] = {t=>weight}

end

if (op == "-") # if this edge is undirected, add the reverse directed edge

if (edges.has_key?(t))

edges[t][s] = weight

else

edges[t] = {s=>weight}

end

end

end

sanity check

if source == nil

raise ArgumentError, "specify source_node by ’-s source’"

end

unless nodes.include?(source)

raise ArgumentError, "source_node(#{source}) is not in the graph"

end 23 / 32

previous exercise: sample code (3/4)

create and initialize 2 hashes: distance and previous

dist = Hash.new # distance for destination

prev = Hash.new # previous node in the best path

nodes.each do |i|

dist[i] = INFINITY # Unknown distance function from source to v

prev[i] = -1 # Previous node in best path from source

end

run the dijkstra algorithm

dist[source] = 0 # Distance from source to source

while (nodes.length > 0)

u := vertex in Q with smallest dist[]

u = nil

nodes.each do |v|

if (!u) || (dist[v] < dist[u])

u = v

end

end

if (dist[u] == INFINITY)

break # all remaining vertices are inaccessible from source

end

nodes = nodes - [u] # remove u from Q

update dist[] of u’s neighbors

edges[u].keys.each do |v|

alt = dist[u] + edges[u][v]

if (alt < dist[v])

dist[v] = alt

prev[v] = u

end

end

end

24 / 32

previous exercise: sample code (4/4)

print the shortest-path spanning-tree

dist.sort.each do |v, d|

print "#{v}: " # destination node

if d != INFINITY

print "(#{d}) " # distance

construct path from dest to source

i = v

path = "#{i}"

while prev[i] != -1 do

path.insert(0, "#{prev[i]} ") # prepend previous node

i = prev[i]

end

puts "#{path}" # print path from source to dest

else

puts "unreachable"

end

end

25 / 32

exercise: correlation

request-table in Class 4:

I use the 5-minute bin output from the previous class

I focus on the request counts

I use 12 5-minute bins for an hour as 12 samples per hour

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16 18 20 22 24

re
qu

es
ts

/s
ec

time (hour)

0
5

10
15
20
25
30
35
40
45
50
55

26 / 32

exercise: correlation (cont’d)

an hourly request table

I row: hourly data (0 .. 23)

I column: hour samples(00 05 10 ... 55) mean stddev

correlation computation

I use 12 5-minute bins as 12 time-series

I compute correlation coefficient among time slots (columns)

#hour 00 05 10 ... 55 mean stddev

0 4123 3963 3871 ... 3987 4046.8 102.3

1 4068 3871 3838 ... 3760 3774.9 106.2

2 3833 3755 3580 ... 3628 3703.6 219.0

3 3614 3433 3418 ... 3462 3515.5 86.2

...

22 4724 4790 4757 ... 4893 4882.2 113.4

23 4922 4932 4889 ... 4188 4818.9 203.8

27 / 32

correlation matrix

compute correlation matrix for the 12 time-series data
correlation matrix

00 05 10 15 20 25 30 35 40 45 50 55
00 1.000 0.982 0.983 0.974 0.953 0.917 0.872 0.849 0.850 0.841 0.862 0.870
05 0.982 1.000 0.992 0.982 0.961 0.914 0.871 0.845 0.848 0.841 0.874 0.899
10 0.983 0.992 1.000 0.983 0.944 0.904 0.855 0.828 0.825 0.814 0.848 0.882
15 0.974 0.982 0.983 1.000 0.963 0.917 0.864 0.846 0.841 0.831 0.864 0.901
20 0.953 0.961 0.944 0.963 1.000 0.951 0.910 0.893 0.893 0.876 0.902 0.912
25 0.917 0.914 0.904 0.917 0.951 1.000 0.985 0.981 0.972 0.956 0.965 0.939
30 0.872 0.871 0.855 0.864 0.910 0.985 1.000 0.994 0.992 0.982 0.975 0.932
35 0.849 0.845 0.828 0.846 0.893 0.981 0.994 1.000 0.992 0.982 0.972 0.917
40 0.850 0.848 0.825 0.841 0.893 0.972 0.992 0.992 1.000 0.993 0.986 0.931
45 0.841 0.841 0.814 0.831 0.876 0.956 0.982 0.982 0.993 1.000 0.987 0.937
50 0.862 0.874 0.848 0.864 0.902 0.965 0.975 0.972 0.986 0.987 1.000 0.959
55 0.870 0.899 0.882 0.901 0.912 0.939 0.932 0.917 0.931 0.937 0.959 1.000

28 / 32

sample code (1/2)

#!/usr/bin/env ruby

read request-table.txt

re = /(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/

hourly = Array.new(24){ Array.new(12) }

ARGF.each_line do |line|

if re.match(line)

for min in 0 .. 11

hourly[$1.to_i][min] = Regexp.last_match(min + 2).to_i

end

end

end

means = Array.new(12)

for min in 0 .. 11

mean = 0

for hour in 0 .. 23

mean += hourly[hour][min]

end

means[min] = Float(mean) / 24

end

29 / 32

sample code (2/2)

cc_matrix = Array.new(12){ Array.new(12) }

for m0 in 0 .. 11

for min in 0 .. 11

cov = 0

sum_dx2 = sum_dy2 = 0

for hour in 0 .. 23

x = hourly[hour][m0]

y = hourly[hour][min]

cov += (x - means[m0]) * (y - means[min])

sum_dx2 += (x - means[m0])**2

sum_dy2 += (y - means[min])**2

end

cc_matrix[m0][min] = Float(cov) / Math.sqrt(sum_dx2 * sum_dy2)

end

end

for m0 in 0 .. 11

for min in 0 .. 11

printf "%.3f ", cc_matrix[m0][min]

end

print "\n"

end

30 / 32

summary

Class 6 Measuring the characteristics of the Internet

I delay, packet loss, jitter

I correlation and multivariate analysis

I principal component analysis

I exercise: correlation analysis

31 / 32

next class

Class 7 Measuring the diversity and complexity of the Internet
(11/9)

I sampling

I statistical analysis

I histogram

I exercise: histogram, CDF

32 / 32

