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review of previous class

Class 6 Measuring the characteristics of the Internet

I delay, packet loss, jitter

I correlation and multivariate analysis

I principal component analysis

I exercise: correlation analysis
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today’s topics

Class 7 Measuring the diversity and complexity of the Internet

I sampling

I statistical analysis

I histogram

I exercise: histogram, CDF
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complex systems

complex systems science

I a system with interfering components that as a whole exhibits
complex behavior not obvious from the individual components

I the real world is full of complex systems
I difficult to analyze by traditional methods based on

reductionism
I need to understand a complex system as is, without

decomposition

I many studies started in 1990’s
I few remaining problems that can be solved with reductionism
I analysis and simulations enabled by computers
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complexity of the Internet

complexity of topology (network science)
I scale-free: the degree distribution of nodes follows a

power-law
I many small-degree nodes and a small number of large-degree

nodes
I highest-degree nodes greatly exceed the average degree

I small-world:
I compact: the average distance between 2 nodes is short
I clusters: nodes are highly clustered

traffic behavior (time-series analysis)

I self-similarity

I long-range dependence
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long tail
a business model for online retail services

I head: a small number of bestseller items: for real stores

I tail: diverse low-sales items: covered by online stores

it is now widely used for diverse niche market

source: http://longtail.com/
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example: AS structure of the Internet
CAIDA AS CORE MAP 2009/03

I visualization of AS topology using skitter/ark data
I longitude of AS (registered location), out-degree of AS

http://www.caida.org/research/topology/as core network/ 7 / 37

http://www.caida.org/research/topology/as_core_network/


self-similarity in network traffic

I exponential model (left), real traffic (middle), self-similar
model (right)

I time scale: 10sec (top), 1 sec (middle), 0.1 sec (bottom)
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diversity in Internet data

I different behavior can be observed from different locations
I country, region, time
I enterprise/university/home, backbone/access network

typical network does not exist!

I how to measure and describe diversity

I methods for sampling
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sampling

I investigating the whole population (census): not realistic in
most cases

I sampling is needed

sampling for the Internet

I observation points

I time, duration

I packet, flow
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packet sampling methods

I counter-based 1/N sampling (deterministic)
I simple to implement, widely used
I possible synchronization with targets of measurement

I probabilistic 1/N sampling
I probabilistically select packets (or other objects)

I sampling by time
I example: take the first minute every hour

I flow-based sampling
I probabilistically sample new flows
I observe all packets belonging to a selected flow
I advantage: able to analyze flow behaviors

I many other sampling methods
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sampling: sample and population
summary statistics and statistical inference

I summary statistics: numbers that summarize properties of
data (e.g., mean and standard deviation)

I statistical inference: makes inferences about the population
based on samples using statistical methods

population: whole data (difficult or impossible to obtain for most
cases)

I need to infer properties of the population from samples
I variables: properties of the population (fixed)
I statistics: inferred values based on samples (varying)

population samples

estimate

estimate
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expected value
the expected value E (X ) of stochastic variable X : mean

I discrete model

E (X ) = µ =
n∑

i=1

xipi

I continuous model

E (X ) = µ =

∫ ∞

−∞
xf (x)dx

properties of expected values

I E (c) = c

I E (X + c) = E (X ) + c

I E (cX ) = cE (X )

I E (X + Y ) = E (X ) + E (Y )
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sample mean

I sample mean: x̄

x̄ =
1

n

n∑
i=1

xi

I sample variance: s2

s2 =
1

n − 1

n∑
i=1

(xi − x̄)2

I sample standard deviation: s
I note: divide sum of squares by (n − 1), not by n

I degree of freedom: the number of independent variables in the
sum of squares is (n − 1) because of x̄
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law of large numbers and central limit theorem

law of large numbers

I as the number of samples increases, the sample mean
converges to the population mean

central limit theorem

I the mean of a sufficiently large number of samples is
approximately normally distributed, regardless of the original
distribution. N(µ, σ2/n)

I when the population is normally distributed, it can be applied
even when n is small
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standard error

standard error: standard deviation of sample mean (SE )

SE = σ/
√

n

I you can improve the precision by increasing the number of
samples n

I standard error becomes smaller but with only 1/
√

n

I the distribution of sample mean from a normal distribution
N(µ, σ) will be a normal distribution with mean µ and
standard deviation SE = σ/

√
n
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normal distribution
I also known as gaussian distribution
I defined by 2 parameters: µ:mean, σ2:variance
I sum of random variables follows normal distribution
I standard normal distribution: µ = 0, σ = 1
I in normal distribution

I 68% within (mean − stddev , mean + stddev)
I 95% within (mean − 2 ∗ stddev , mean + 2 ∗ stddev)
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histogram (1/2)
to see distribution of the data set

I split the data into equal-sized bins by value

I count the frequency of each bin

I X axis: variable, Y axis: frequency
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histogram (2/2)

with histograms
I you can identify

I center (i.e., the location) of the data
I spread (i.e., the scale) of the data
I skewness of the data
I presence of outliers
I presence of multiple modes in the data

limitations of histograms
I needs appropriate bin size

I too small: each bin doesn’t have enough samples (e.g., empty
bins)

I too large: only few regions available
I difficult for highly skewed distribution

I enough samples needed
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methods to select bin size

Sturges’ formula: the number of bins k, the number of samples n

k = log2 n + 1

Scott’s choice: bin width h, standard deviation σ, the number of
samples n

h =
3.5σ

n1/3

I these are just guidelines. you need to find an appropriate size
depending on the distribution and the meaning of variables.
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probability density function; pdf
I normalize the frequency (count) to make the sum of the area

under the histogram to be 1
I divide the count by (the total number of observations * the bin

width)

I probability density function: probability of observing x

f (x) = P[X = x ]
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cumulative distribution function; cdf
I density function: probability of observing x

f (x) = P[X = x ]

I cumulative distribution function: probability of observing x or
less

F (x) = P[X <= x ]

I better than histogram when distribution is highly skewed,
sample count is not enough, or outliers are not negligible
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histogram vs cdf
I no need to worry about bin size or sample count for cdf
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complementary cumulative distribution function (ccdf)

in power-law distribution, the tail of distribution is often of interest

ccdf: probability of observing x or more

F (x) = 1 − P[X <= x ]

I plot ccdf in log-log scale
I to see the tail of the distribution or scaling property
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example CCDF

I comparing the tails of the original data and sampled data
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previous exercise: correlation

request-table in Class 4:

I use the 5-minute bin output from the previous class

I focus on the request counts

I use 12 5-minute bins for an hour as 12 samples per hour
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previous exercise: correlation (cont’d)

an hourly request table

I row: hourly data (0 .. 23)

I column: hour samples(00 05 10 ... 55) mean stddev

correlation computation

I use 12 5-minute bins as 12 time-series

I compute correlation coefficient among time slots (columns)

#hour 00 05 10 ... 55 mean stddev

0 4123 3963 3871 ... 3987 4046.8 102.3

1 4068 3871 3838 ... 3760 3774.9 106.2

2 3833 3755 3580 ... 3628 3703.6 219.0

3 3614 3433 3418 ... 3462 3515.5 86.2

...

22 4724 4790 4757 ... 4893 4882.2 113.4

23 4922 4932 4889 ... 4188 4818.9 203.8
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previous exercise: correlation matrix

compute correlation matrix for the 12 time-series data
correlation matrix

00 05 10 15 20 25 30 35 40 45 50 55
00 1.000 0.982 0.983 0.974 0.953 0.917 0.872 0.849 0.850 0.841 0.862 0.870
05 0.982 1.000 0.992 0.982 0.961 0.914 0.871 0.845 0.848 0.841 0.874 0.899
10 0.983 0.992 1.000 0.983 0.944 0.904 0.855 0.828 0.825 0.814 0.848 0.882
15 0.974 0.982 0.983 1.000 0.963 0.917 0.864 0.846 0.841 0.831 0.864 0.901
20 0.953 0.961 0.944 0.963 1.000 0.951 0.910 0.893 0.893 0.876 0.902 0.912
25 0.917 0.914 0.904 0.917 0.951 1.000 0.985 0.981 0.972 0.956 0.965 0.939
30 0.872 0.871 0.855 0.864 0.910 0.985 1.000 0.994 0.992 0.982 0.975 0.932
35 0.849 0.845 0.828 0.846 0.893 0.981 0.994 1.000 0.992 0.982 0.972 0.917
40 0.850 0.848 0.825 0.841 0.893 0.972 0.992 0.992 1.000 0.993 0.986 0.931
45 0.841 0.841 0.814 0.831 0.876 0.956 0.982 0.982 0.993 1.000 0.987 0.937
50 0.862 0.874 0.848 0.864 0.902 0.965 0.975 0.972 0.986 0.987 1.000 0.959
55 0.870 0.899 0.882 0.901 0.912 0.939 0.932 0.917 0.931 0.937 0.959 1.000
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previous exercise: sample code (1/2)

#!/usr/bin/env ruby

# read request-table.txt

re = /(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/

hourly = Array.new(24){ Array.new(12) }

ARGF.each_line do |line|

if re.match(line)

for min in 0 .. 11

hourly[$1.to_i][min] = Regexp.last_match(min + 2).to_i

end

end

end

means = Array.new(12)

for min in 0 .. 11

mean = 0

for hour in 0 .. 23

mean += hourly[hour][min]

end

means[min] = Float(mean) / 24

end

29 / 37



previous exercise: sample code (2/2)

cc_matrix = Array.new(12){ Array.new(12) }

for m0 in 0 .. 11

for min in 0 .. 11

cov = 0

sum_dx2 = sum_dy2 = 0

for hour in 0 .. 23

x = hourly[hour][m0]

y = hourly[hour][min]

cov += (x - means[m0]) * (y - means[min])

sum_dx2 += (x - means[m0])**2

sum_dy2 += (y - means[min])**2

end

cc_matrix[m0][min] = Float(cov) / Math.sqrt(sum_dx2 * sum_dy2)

end

end

for m0 in 0 .. 11

for min in 0 .. 11

printf "%.3f ", cc_matrix[m0][min]

end

print "\n"

end
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exercise: histogram and CDF

I distribution of finish time of a city marathon (from Class 2)

I plot a CDF this time
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exercise: histogram and CDF (cont’d)
I distribution of finish time of a city marathon (from Class 2)
I plot a CDF this time

original:
# Minutes Count

133 1

134 7

135 1

136 4

137 3

138 3

141 7

142 24

...

add cumulative count:
# Minutes Count CumulativeCount

133 1 1

134 7 8

135 1 9

136 4 13

137 3 16

138 3 19

141 7 26

142 24 50

...
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answers: assignment 1

I assignment: compute mean and standard deviation of traffic,
plot the results

I similar to today’s exercise but for traffic (not for request
counts)

I to understand programming of statistical procedures and
graph plotting

I data: use the 5-min bin outputs from the previous exercise
I items to submit

1. traffic data table
2. graph 1: a plot of 12 samples per hour for 24 hours
3. graph 2: a plot of mean and standard deviation of traffic for

24 hours

I the results should look similar to ones for the request counts
I you need to adjust the number of digits for table outputs
I use “Mbps” for the unit of traffic in the graphs
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answers: traffic data table

the table should look like:

#hour 00 05 ... mean stddev

0 1766135158 1857342919 ... 2420355075.6 777770181.4

1 2202831446 2322940598 ... 2120850506.4 521760120.1

2 5980871926 2158091698 ... 2261318711.4 1161290997.4

3 1741001140 1609648229 ... 1692879169.6 286988721.2

...
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answers: graphs for traffic

I graph 1: 12 samples per hour, for 24 hours

I graph 2: mean and standard deviation for 24 hours
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summary

Class 7 Measuring the diversity and complexity of the Internet

I sampling

I statistical analysis

I histogram

I exercise: histogram, CDF
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next class

Class 8 Distributions (11/16)

I normal distribution and other distributions

I confidence intervals

I statistical tests

I exercise: generating distributions, confidence intervals

I assignment 2
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