
Internet Measurement and Data Analysis (11)

Kenjiro Cho

2012-12-12



review of previous class

Class 10 Anomaly detection and machine learning (12/05)

I Anomaly detection

I Machine Learning

I SPAM filtering and Bayes theorem

I exercise: naive Bayesian filter

2 / 39



today’s topics

Class 11 Data Mining

I Pattern extraction

I Classification

I Clustering

I exercise: clustering

3 / 39



data mining

I huge volume of data
I difficult to handle with traditional methods
I need to extract information hidden in data that is not readily

evident

I Data Mining
I huge volume, multi-dimensional diverse data, non-trivial

distributions
I methods often derived from ideas in machine learning, AI,

pattern recognition, statistics, database, signal processing

I data processing becomes practical by growing computing
power (e.g., cloud computing)

4 / 39



Data Mining methods
definition: non-trivial extraction of implicit, previously unknown
and potentially useful information from data

I pattern extraction: find existing models and patterns in data
I correlation
I time-series

I classification: automatically create new classes that do not
exist in the original data

I rule-based methods
I naive Bayesian filter
I neural networks
I support vector machine (SVM)
I dimensionality reduction (e.g., PCA)

I clustering: compute the distance (or similarity) between data
points and group them

I distance based, density based, graph based
I k-means, DBSCAN

I anomaly detection: find deviation from normal state using
statistical methods

I univariate, multivariate
I outlier detection

5 / 39



distances (review)

various distances

I Euclidean distance

I standardized Euclidean distance

I Minkowski distance

I Mahalanobis distance

similarities

I binary vector similarities

I n-dimensional vector similarities

6 / 39



properties of distance

a metric of distance d(x, y) between 2 points (x, y) in space
positivity

d(x, y) ≥ 0

d(x, y) = 0 ⇔ x = y

symmetry
d(x, y) = d(y, x)

triangle inequality

d(x, z) ≤ d(x, y) + d(y, z)

7 / 39



Euclidean distance

word “distance” usually means “Euclidean distance”
a distance of 2 points (x, y) in a n-dimensional space

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2

8 / 39



standardized Euclidean distance

I when variances are different among variables, distances are
affected.

I standard Euclidean distance: normalized by dividing the
Euclidean distance by the variance of each variable

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2

s2
k

9 / 39



Minkowski distance
generalization of Euclidean distance: as parameter r grows, a short
cut crossing different axes is preferred more

d(x, y) = (
n∑

k=1

|xk − yk|r)
1
r

I r = 1: Manhattan distance
I Hamming distance: for 2 strings of equal length, the number

of positions at which the corresponding symbols are different.
I example: the hamming distance of 111111 and 101010 is 3

I r = 2: Euclidean distance

Manhattan distance vs. Euclidean distance

10 / 39



vector norm (1/2)
vector norm: the length of a vector

‖x‖ where x is a vector

the ln-norm of x is defined by Minkowski distance as

‖x‖n = n

s

X

i

|xi|n

l0-norm: the total number of non-zero elements in a vector

‖x‖0 = #(i|xi 6= 0)

l1-norm: sum of absolute difference

‖x‖1 =
X

i

|xi|

l2-norm: Euclidean distance

‖x‖2 =

s

X

i

|xi|2

l∞-norm: the maximum entry’s magnitude of a vector

‖x‖∞ = max(|xi|)

11 / 39



vector norm (2/2)

For the example vector x = (1, 2, 3)

‖x‖0 3 = 3.000

‖x‖1 6 = 6.000

‖x‖2

√
14 = 3.742

‖x‖3 62/3 = 3.302

‖x‖4 21/4
√

7 = 3.146

‖x‖∞ 3 = 3.000

unit circles of lp-norm with various values of p

12 / 39



Mahalanobis distance

a distance that takes correlations into account, when correlation
exists between variables

mahalanobis(x, y) = (x − y)Σ−1(x − y)T

here, Σ−1 is the inverse matrix of its covariance matrix

13 / 39



similarities

similarity

I numerical measure of how alike 2 data objects are

properties of similarity
positivity

0 ≤ s(x, y) ≤ 1

s(x, y) = 1 ⇔ x = y

symmetry
s(x, y) = s(y, x)

in general, triangle inequality does not apply to similarities

14 / 39



similarity between binary vectors
Jaccard coefficient

I used for similarity between binary vectors in which the
occurrences of 1 is much smaller than the occurrences of 0

I example: as a metric of similarity by occurrences of words in
documents

I many words do not appear in both documents ⇒ not
considered

I the following table shows the relationship of each item

vector y
1 0

vector x 1 n11 n10

0 n01 n00

Jaccard coefficient:

J =
n11

n11 + n10 + n01

15 / 39



similarity between vectors
similarity between (non-binary) vectors

I example: similarity of documents where frequencies of words
are also taken into consideration

cosine similarity

I take the angle (cosine) of (x, y) of vectors
I normalized by the length of the vector ⇒ length is not

considered

cos(x, y) =
x · y

‖x‖‖y‖
x · y =

Pn
k=1 xkyk : product of vectors

‖x‖ =
p

Pn
k=1 x2

k =
√

x · x : length of the vector

x

y

16 / 39



example: cosine similarity

x = 3 2 0 5 0 0 0 2 0 0
y = 1 0 0 0 0 0 0 1 0 2

x · y = 3 ∗ 1 + 2 ∗ 1 = 5
‖x‖ =

√
3 ∗ 3 + 2 ∗ 2 + 5 ∗ 5 + 2 ∗ 2 =

√
42 = 6.481

‖y‖ =
√

1 ∗ 1 + 1 ∗ 1 + 2 ∗ 2 =
√

6 = 2.449

cos(x, y) = 5
6.481∗2.449

= 0.315

17 / 39



clustering

important technique for classifying data with complex relationship

compute the distance (or similarity) of variables to make them into
groups

I to classify and understand data

I to summarize data

various applications

I business: grouping customers for marketing purposes

I meteorology: finding patterns in complex weather data

I biology: classifying genes and proteins

I medical science and pharmacy: complex relationship of
symptoms and effects

18 / 39



clustering methods

I partitional clustering
I k-means method

I hierarchical clustering
I MST method
I DBSCAN method

original points partitional clustering hierarchical clustering

19 / 39



k-means method
I partitional clustering
I specify the number of cluster, k
I basic algorithm is simple

I each cluster has centroid (usually mean)
I assign each object to the closest cluster
I repeat re-computation of centroids and cluster assignments

I limitations
I need to specify the number of clusters, k, beforehand
I sensitive to the selection of initial points
I clusters are supposed to have similar sizes and densities, and a

round shape
I sensitive to outliers

basic k-means algorithm:
1: select k points randomly as the initial centroids
2: repeat
3: form k clusters by assigning all points to the closest centroid
4: recompute the centroid of each cluster
5: until the centroids don’t change

20 / 39



hierarchical clustering

I generate clusters using a tree structure
I the cluster structure can be explained by the tree

I no need to specify the number of clusters beforehand
I 2 approaches

I agglomerative: start with data points as individual clusters,
and repeat merging the closest clusters

I divisive: start with one all-inclusive cluster, and repeat splitting
clusters

21 / 39



MST clustering

Minimum Spanning Tree clustering

I divisive hierarchical clustering

I start with an arbitrary point, and create MST

I repeat dividing clusters by removing the longest edge

22 / 39



DBSCAN
Density-Based Spatial Clustering

I density-based: combine data points within the specified
distance

I can extract arbitrary (non-round) shapes of clusters
I robust against noise and outliers
I distance threshold Eps and point threshold MinPts

I Core points: within the distance Eps, more than MinPts
neighbors exist

I Border points: not Core, but have a core within the distance
Eps

I Noise points: have no core within the distance Eps
I limitations: clusters with different densities, or with large

number of parameters

DBSCAN algorithm:
1: label all points as core, border, or noise points
2: eliminate noise points
3: put an edge between all core points that are within Eps of each other
4: make each group of connected core points into a separate cluster
5: assign each border point to one of the clusters of its associated core points 23 / 39



DBSCAN: Core, Border, and Noise Points

source: Tan, Steinbach, Kumer. Introduction to Data Mining

24 / 39



DBSCAN: example of Core, Border, and Noise Points

source: Tan, Steinbach, Kumer. Introduction to Data Mining

25 / 39



DBSCAN: example clusters

source: Tan, Steinbach, Kumer. Introduction to Data Mining

26 / 39



previous exercise: SPAM filtering

I SPAM filtering using naive bayesian classifier
I based on the code from “Programming Collective Intelligence”

Chapter 6

% ruby naivebayes.rb

classifying "quick rabbit" => good

classifying "quick money" => bad

27 / 39



naive bayesian classifier for the exercise

compute the propbability of a document to be classified into a
specific category by words appearing in the dicument

P (C)
n∏

i=1

P (xi|C)

I P (C): the probability of the category

I
∏n

i=1 P (xi|C): product of the conditional probability of each
word in the category

select the category with the highest probability

I threshold： the probability of the best category should be
thresh times higher than that of the second best category

28 / 39



SPAM classifier script

I training and classifier

# create a classifier instance

cl = NaiveBayes.new

# training

cl.train(’Nobody owns the water.’,’good’)

cl.train(’the quick rabbit jumps fences’,’good’)

cl.train(’buy pharmaceuticals now’,’bad’)

cl.train(’make quick money at the online casino’,’bad’)

cl.train(’the quick brown fox jumps’,’good’)

# classify

sample_data = [ "quick rabbit", "quick money" ]

sample_data.each do |s|

print "classifying \"#{s}\" => "

puts cl.classify(s, default="unknown")

end

29 / 39



script: Classifier Class (1/2)
# feature extraction

def getwords(doc)

words = doc.split(/\W+/)

words.map!{|w| w.downcase}

words.select{|w| w.length < 20 && w.length > 2 }.uniq

end

# base class for classifier

class Classifier

def initialize

# initialize arrays for feature counts, category counts

@fc, @cc = {}, {}

end

def getfeatures(doc)

getwords(doc)

end

# increment feature/category count

def incf(f, cat)

@fc[f] ||= {}

@fc[f][cat] ||= 0

@fc[f][cat] += 1

end

# increment category count

def incc(cat)

@cc[cat] ||= 0

@cc[cat] += 1

end

...

30 / 39



script: Classifier Class (2/2)

def fprob(f,cat)

if catcount(cat) == 0

return 0.0

end

# the total number of times this feature appeared in this

# category divided by the total number of items in this category

Float(fcount(f, cat)) / catcount(cat)

end

def weightedprob(f, cat, weight=1.0, ap=0.5)

# calculate current probability

basicprob = fprob(f, cat)

# count the number of times this feature has appeared in all categories

totals = 0

categories.each do |c|

totals += fcount(f,c)

end

# calculate the weighted average

((weight * ap) + (totals * basicprob)) / (weight + totals)

end

def train(item, cat)

features = getfeatures(item)

features.each do |f|

incf(f, cat)

end

incc(cat)

end

end

31 / 39



script: NaiveBayes Class
# naive baysian classifier

class NaiveBayes < Classifier

def initialize

super

@thresholds = {}

end

def docprob(item, cat)

features = getfeatures(item)

# multiply the probabilities of all the features together

p = 1.0

features.each do |f|

p *= weightedprob(f, cat)

end

return p

end

def prob(item, cat)

catprob = Float(catcount(cat)) / totalcount

docprob = docprob(item, cat)

return docprob * catprob

end

def classify(item, default=nil)

# find the category with the highest probability

probs, max, best = {}, 0.0, nil

categories.each do |cat|

probs[cat] = prob(item, cat)

if probs[cat] > max

max = probs[cat]

best = cat

end

end

# make sure the probability exceeds threshold*next best

...
32 / 39



today’s exercise: k-means clustering

% ruby k-means.rb km-data.txt > km-results.txt

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  1000  2000  3000  4000  5000  6000

Y

X

1
2
3

33 / 39



k-means clustering results

I different results by different initial values

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  1000  2000  3000  4000  5000  6000

Y

X

cluster 1
cluster 2
cluster 3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  1000  2000  3000  4000  5000  6000
Y

X

cluster 1
cluster 2
cluster 3

34 / 39



k-means code (1/2)
k = 3 # k clusters

re = /^(\d+)\s+(\d+)/

INFINITY = 0x7fffffff

# read data

nodes = Array.new # array of array for data points: [x, y, cluster_index]

centroids = Array.new # array of array for centroids: [x, y]

ARGF.each_line do |line|

if re.match(line)

c = rand(k) # randomly assign initial cluster

nodes.push [$1.to_i, $2.to_i, c]

end

end

round = 0

begin

updated = false

# assignment step: assign each node to the closest centroid

if round != 0 # skip assignment for the 1st round

nodes.each do |node|

dist2 = INFINITY # square of dsistance to the closest centroid

cluster = 0 # closest cluster index

for i in (0 .. k - 1)

d2 = (node[0] - centroids[i][0])**2 + (node[1] - centroids[i][1])**2

if d2 < dist2

dist2 = d2

cluster = i

end

end

node[2] = cluster

end

end

35 / 39



k-means code (2/2)

# update step: compute new centroids

sums = Array.new(k)

clsize = Array.new(k)

for i in (0 .. k - 1)

sums[i] = [0, 0]

clsize[i] = 0

end

nodes.each do |node|

i = node[2]

sums[i][0] += node[0]

sums[i][1] += node[1]

clsize[i] += 1

end

for i in (0 .. k - 1)

newcenter = [Float(sums[i][0]) / clsize[i], Float(sums[i][1]) / clsize[i]]

if round == 0 || newcenter[0] != centroids[i][0] || newcenter[1] != centroids[i][1]

centroids[i] = newcenter

updated = true

end

end

round += 1

end while updated == true

# print the results

nodes.each do |node|

puts "#{node[0]}\t#{node[1]}\t#{node[2]}"

end

36 / 39



gnuplot script

set key left

set xrange [0:6000]

set yrange [0:6000]

set xlabel "X"

set ylabel "Y"

plot "km-results.txt" using 1:($3==0?$2:1/0) title "cluster 1" with points, \

"km-results.txt" using 1:($3==1?$2:1/0) title "cluster 2" with points, \

"km-results.txt" using 1:($3==2?$2:1/0) title "cluster 3" with points

37 / 39



summary

Class 11 Data Mining

I Pattern extraction

I Classification

I Clustering

I exercise: clustering

38 / 39



next class

Class 12 Search and Ranking (12/19)

I Search systems

I PageRank

I exercise: PageRank algorithm

I on final report

39 / 39


