
Internet Measurement and Data Analysis (2)

Kenjiro Cho

2012-10-03

review of previous class

theme of the class
I looking at the Internet from different views

I learn how to measure what is difficult to measure
I learn how to extract useful information from huge data sets

Class 1 Introduction (9/26)

I Big Data and Collective Intelligence

I Internet measurement

I Large-scale data analysis

I exercise: introduction of Ruby scripting language

2 / 40

today’s topics

Data and variability

I Summary statistics

I Sampling

I How to make good graphs

I exercise: computing summary statistics by Ruby

I exercise: graph plotting by Gnuplot

3 / 40

data and variability

I variability of data
I variability in measurements against the true value

I the mean should be close to the true value
I (but, to discuss the precision, we need to understand the

variability)

I variability in measured target itself
I we need to understatnd the variability

I ways to understand the variability in data
I summary statistics
I visualization by graphs

4 / 40

summary statistics

numbers that summarize properties of data
I measure of location:

I mean, median, mode

I measure of spread:
I range, variance, standard deviation

5 / 40

measures of location
I mean: average, sensitive to outliers

x̄ =
1

n

n∑
i=1

xi

I median: middle value (50th-percentile)

xmedian =

{
xr+1 when m is odd, m = 2r + 1
(xr + xr+1)/2 when m is even, m = 2r

I mode: value with highest frequency

these are same if measurements have symmetric distribution

x

f(x)

mean
median

mean

median
mode

mode

6 / 40

percentiles
I pth-percentile:

I p% of the observed values are less than xp in variable xi

I median = 50th-percentile

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-4 -3 -2 -1 0 1 2 3 4

to
ta

l o
bs

er
va

tio
ns

 (%
)

sorted variable x

7 / 40

measures of spread
common measures of the spread of a data set

I range: difference between the max and min
I variance:

σ2 =
1

n

n
X

i=1

(xi − x̄)2

I standard deviation: σ
I most common measure of statistical dispersion
I can be directly compared with mean

I for a normal distribution, 68% fall into (mean ± stddev)、
95% fall into (mean ± 2stddev)

0

0.2

0.4

0.6

0.8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

f(x)

x

exp(-x**2/2)mean
median

�

68%

95% 8 / 40

computing variance
variance:

σ2 =
1

n

n
X

i=1

(xi − x̄)2

using the above formula, you need to compute the mean first, and then, compute the
variance.
you can compute the variance in one-pass with the following formula.

σ2 =
1

n

n
X

i=1

(xi − x̄)2

=
1

n

n
X

i=1

(x2
i − 2xi x̄ + x̄2)

=
1

n
(

n
X

i=1

x2
i − 2x̄

n
X

i=1

xi + nx̄2)

=
1

n

n
X

i=1

x2
i − 2x̄2 + x̄2

=
1

n

n
X

i=1

x2
i − x̄2

9 / 40

sampling

I investigating the whole population (census): not realistic in
most cases

I sampling is needed

sampling for the Internet

I observation points

I time, duration

I packet, flow, IP addresses, user IDs

10 / 40

example: packet sampling methods

I counter-based 1/N sampling (deterministic)
I simple to implement, widely used
I possible synchronization with targets of measurement

I probabilistic 1/N sampling
I probabilistically select packets (or other objects)

I sampling by time
I example: take the first minute every hour

I flow-based sampling
I probabilistically sample new flows
I observe all packets belonging to a selected flow
I advantage: able to analyze flow behaviors

I many other sampling methods

11 / 40

sampling: sample and population
summary statistics and statistical inference

I summary statistics: numbers that summarize properties of
data (e.g., mean and standard deviation)

I statistical inference: makes inferences about the population
based on samples using statistical methods

population: whole data (difficult or impossible to obtain for most
cases)

I need to infer properties of the population from samples
I variables: properties of the population (fixed)
I statistics: inferred values based on samples (varying)

population samples

estimate

estimate

12 / 40

expected value
the expected value E (X) of stochastic variable X : mean

I discrete model

E (X) = µ =
n∑

i=1

xipi

I continuous model

E (X) = µ =

∫ ∞

−∞
xf (x)dx

properties of expected values

I E (c) = c

I E (X + c) = E (X) + c

I E (cX) = cE (X)

I E (X + Y) = E (X) + E (Y)

13 / 40

sample mean

I sample mean: x̄

x̄ =
1

n

n∑
i=1

xi

I sample variance: s2

s2 =
1

n − 1

n∑
i=1

(xi − x̄)2

I sample standard deviation: s
I note: divide sum of squares by (n − 1), not by n

I degree of freedom: the number of independent variables in the
sum of squares is (n − 1) because of x̄

14 / 40

law of large numbers and central limit theorem

law of large numbers

I as the number of samples increases, the sample mean
converges to the population mean

central limit theorem

I the mean of a sufficiently large number of samples is
approximately normally distributed, regardless of the original
distribution. N(µ, σ2/n)

I when the population is normally distributed, it can be applied
even when n is small

15 / 40

standard error

standard error: standard deviation of sample mean (SE)

SE = σ/
√

n

I you can improve the precision by increasing the number of
samples n

I standard error becomes smaller but with only 1/
√

n

I the distribution of sample mean from a normal distribution
N(µ, σ2) will be a normal distribution with mean µ and
standard deviation SE = σ/

√
n

16 / 40

normal distribution
I also known as gaussian distribution
I defined by 2 parameters: µ:mean, σ2:variance
I sum of random variables follows normal distribution
I standard normal distribution: µ = 0, σ = 1
I in normal distribution

I 68% within (mean − stddev , mean + stddev)
I 95% within (mean − 2 ∗ stddev , mean + 2 ∗ stddev)

0

0.2

0.4

0.6

0.8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

f(x)

x

exp(-x**2/2)mean
median

�

68%

95%

17 / 40

guidelines for plotting
require minimum effort from the reader

I label the axes clearly

I label the tics on the axes

I identify individual curves/bars

I select appropriate font size
I use commonly accepted practices

I zero-origins, math symbols, acronyms

I show variation/distribution of variables

I select ranges properly

I do not present too many items in a single chart

I when comparing data sets, use appropriate normalization

I when comparing plots, use the same scale for the axes

I do not use pie-charts or 3D-effects for technical writing
I when using colors

I make sure it is readable in black-and-white print
I make sure readable on data projectors (e.g., do not use yellow)

18 / 40

plotting raw data

I time series plots

I histograms

I probability plots

I scatter plots

there are many other plotting techniques

19 / 40

time series plots
time-series plots (or other sequence plots) provides a feel for the
data

I you can identify
I shifts in locations
I shifts in variation
I outliers

-4

-2

 0

 2

 4

 0 500 1000 1500 2000 2500 3000 3500

no
rm

al
iz

ed
 tr

af
fic

 v
ol

um
e

time (sec)

20 / 40

histograms
to see distribution of the data set

I split the data into equal-sized bins by value
I count the frequency of each bin
I plot

I X axis: variable
I Y axis: frequency

 0

 20

 40

 60

 80

 100

 120

 140

 160

-4 -3 -2 -1 0 1 2 3 4

fre
qu

en
cy

normalized traffic volume

21 / 40

histograms (cont)

with histograms
I you can identify

I center (i.e., the location) of the data
I spread (i.e., the scale) of the data
I skewness of the data
I presence of outliers
I presence of multiple modes in the data

limitations of histograms
I needs appropriate bin size

I too small: each bin doesn’t have enough samples (e.g., empty
bins)

I too large: only few regions available
I difficult for highly skewed distribution

I enough samples needed

22 / 40

probability density function (pdf)
I normalize the frequency (count)

I sum of the area under the histogram to be 1
I divide the count by the total number of observations times the

bin width

I probability density function: probability of observing x

f (x) = P[X = x]

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

-4 -3 -2 -1 0 1 2 3 4

pd
f

normalized traffic volume 23 / 40

cumulative distribution function (cdf)
I density function: probability of observing x

f (x) = P[X = x]

I cumulative distribution function: probability of observing x or
less

F (x) = P[X <= x]

I better than histogram when distribution is highly skewed,
sample count is not enough, or outliers are not negligible

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-4 -3 -2 -1 0 1 2 3 4

cd
f

normalized traffic volume 24 / 40

histogram vs cdf
I no need to worry about bin size or sample count for cdf

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 300 400 500 600 700 800 900 1000

hi
st

og
ra

m

response time (msec)

ping rtt

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 300 400 500 600 700 800 900 1000

hi
st

og
ra

m

response time (msec)

requests: 8640

replies: 8606

average: 251 ms

min: 194 ms

10th: 195 ms

50th: 196 ms

90th: 376 ms

max: 20481 ms

loss rate: 0.4%

ping rtt

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 300 400 500 600 700 800 900 1000

C
D

F

response time (msec)

8241 samples
100 samples

original data (left), 100 samples (right), cdfs (bottom)
25 / 40

scatter plots
I explores relationships between 2 variables

I X-axis: variable X
I Y-axis: corresponding value of variable Y

I you can identify
I whether variables X and Y related

I no relation, positive correlation, negative correlation
I whether the variation in Y changes depending on X
I outliers

I examples: positive correlation 0.7 (left), no correlation 0.0
(middle), negative correlation -0.5 (right)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative

correlation -0.5 (right)

26 / 40

plotting tools

I gnuplot
I command-line tool suitable for automated plotting
I http://gnuplot.info/

I grace
I comes with graphical user interface
I powerful for fine-tuning the output
I http://plasma-gate.weizmann.ac.il/Grace/

27 / 40

previous exercise: a program to count text lines
count the number of text lines in a file given by the argument

filename = ARGV[0]

count = 0

file = open(filename)

while text = file.gets

count += 1

end

file.close

puts count

write to “count.rb” and then run it

$ ruby count.rb foo.txt

rewrite it in a more rubyish way

#!/usr/bin/env ruby

count = 0

ARGF.each_line do |line|

count += 1

end

puts count

28 / 40

exercise: computing summary statistics

I mean

I standard deviation

I median

I finish-time data of a city marathon: from P. K. Janert
“Gnuplot in Action”

http://web.sfc.keio.ac.jp/~kjc/classes/sfc2012f-measurement/marathon.txt

% head marathon.txt

Minutes Count

133 1

134 7

135 1

136 4

137 3

138 3

141 7

142 24

143 13

29 / 40

exercise: computing mean
I read finish-time(in minutes) and the number of finishers from each line, sum up

the product, and finally divide it by the total number of finishers

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

sum = 0 # sum of data

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

end

end

mean = Float(sum) / n

printf "n:%d mean:%.1f\n", n, mean

% ruby mean.rb marathon.txt

n:2355 mean:171.3

30 / 40

exercise: computing standard deviation
I algorithm: σ2 = 1

n

∑n
i=1(xi − x̄)2

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

data = Array.new

sum = 0 # sum of data

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

for i in 1 .. cnt

data.push min

end

end

end

mean = Float(sum) / n

sqsum = 0.0

data.each do |i|

sqsum += (i - mean)**2

end

var = sqsum / n

stddev = Math.sqrt(var)

printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev

% ruby stddev.rb marathon.txt

n:2355 mean:171.3 variance:199.9 stddev:14.1
31 / 40

exercise: computing standard deviation in one-pass

I one-pass algorithm: σ2 = 1
n

∑n
i=1 x2

i − x̄2

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

sum = 0 # sum of data

n = 0 # the number of data

sqsum = 0 # su of squares

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

sum += min * cnt

n += cnt

sqsum += min**2 * cnt

end

end

mean = Float(sum) / n

var = Float(sqsum) / n - mean**2

stddev = Math.sqrt(var)

printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev

% ruby stddev2.rb marathon.txt

n:2355 mean:171.3 variance:199.9 stddev:14.1

32 / 40

exercise: computing median
I create an array of each finish time, sort the array by value, and extract the

central value

regular expression to read minutes and count

re = /^(\d+)\s+(\d+)/

data = Array.new

ARGF.each_line do |line|

if re.match(line)

min = $1.to_i

cnt = $2.to_i

for i in 1 .. cnt

data.push min

end

end

end

data.sort! # just in case data is not sorted

n = data.length # number of array elements

r = n / 2 # when n is odd, n/2 is rounded down

if n % 2 != 0

median = data[r]

else

median = (data[r - 1] + data[r])/2

end

printf "r:%d median:%d\n", r, median

% ruby median.rb marathon.txt

r:1177 median:176 33 / 40

exercise: gnuplot

I plotting simple graphs using gnuplot
I to intuitively understand the data

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 120 140 160 180 200 220 240

co
un

t

finish time (minutes)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 120 140 160 180 200 220 240
C

D
F

finish time (minutes)

34 / 40

histogram
I distribution of finish time of a city marathon

plot "marathon.txt" using 1:2 with boxes

make the plot look better (right)

set boxwidth 1

set xlabel "finish time (minutes)"

set ylabel "count"

set yrange [0:180]

set grid y

plot "marathon.txt" using 1:2 with boxes notitle

 0

 20

 40

 60

 80

 100

 120

 140

 160

 120 140 160 180 200 220 240

"marathon.txt" using 1:2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 120 140 160 180 200 220 240

co
un

t

finish time (minutes)

35 / 40

exercise: plotting CDF of finish-time
original data:

Minutes Count

133 1

134 7

135 1

136 4

137 3

138 3

141 7

142 24

...

add cumulative count:

Minutes Count CumulativeCount

133 1 1

134 7 8

135 1 9

136 4 13

137 3 16

138 3 19

141 7 26

142 24 50

...

36 / 40

exercise: CDF (2)
ruby code:

re = /^(\d+)\s+(\d+)/

cum = 0

ARGF.each_line do |line|

begin

if re.match(line)

matched

time, cnt = $~.captures

cum += cnt.to_i

puts "#{time}\t#{cnt}\t#{cum}"

end

end

end

gnuplot command:

set boxwidth 1

set xlabel "finish time (minutes)"

set ylabel "CDF"

set grid y

plot "marathon-cdf.txt" using 1:($3 / 2355) with lines notitle

37 / 40

CDF plot of finish-time of city marathon

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 120 140 160 180 200 220 240

C
D

F

finish time (minutes)

38 / 40

summary

Data and variability

I Summary statistics

I Sampling

I How to make good graphs

I exercise: graph plotting by Gnuplot

39 / 40

next class

NO CLASS on 10/10

Class 3 Data recording and log analysis (10/17)

I Network management tools

I Data format

I Log analysis methods

I exercise: log data and regular expression

40 / 40

