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review of previous class

Class 4 Distribution and confidence intervals (10/24)

I Normal distribution

I Confidence intervals and statistical tests

I Distribution generation

I exercise: confidence intervals

I assignment 1
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today’s topics

Class 5 Diversity and complexity

I Long tail

I Web access and content distribution

I Power-law and complex systems

I exercise: power-law analysis
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long tail
a business model for online retail services

I head: a small number of bestseller items: for real stores

I tail: diverse low-sales items: covered by online stores

it is now widely used for diverse niche market

source: http://longtail.com/
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complex systems

complex systems science

I a system with interfering components that as a whole exhibits
complex behavior not obvious from the individual components

I the real world is full of complex systems
I difficult to analyze by traditional methods based on

reductionism
I need to understand a complex system as is, without

decomposition

I many studies started in 1990’s
I few remaining problems that can be solved with reductionism
I analysis and simulations enabled by computers
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power-law and complex systems
power-law

I one of the characteristics of complex systems
I power-law: observed variable changes in proportion to a power

of some parameter
I self-similarity (fractal)

I observed in various natural and social phenomena and Internet
services

I scale-free: no typical scale

Koch curve: fractal image similar to coastline
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Zipf’s law

I an empirical law formulated in 1930’s about frequency in
ranked data

I the share is inversely proportional to its rank
I the share of the kth ranked item is proportional to 1/k

I observed in social science, natural science and data
communications

I the frequency of English words, the population of cities, wealth
distribution, etc

I file size, network traffic

I long-tail in a linear-scale plot, heavy-tail in a log-log plot
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power-law distribution
I power-law distribution: the probability of observing a value is

proportional to a power of the value

f (x) = axk

I appears as a straight-line in a log-log plot

log f (x) = k log x + log a
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complexity of the Internet

complexity of topology (network science)
I scale-free: the degree distribution of nodes follows a

power-law
I many small-degree nodes and a small number of large-degree

nodes
I highest-degree nodes greatly exceed the average degree

I small-world:
I compact: the average distance between 2 nodes is short
I clusters: nodes are highly clustered

traffic behavior (time-series analysis)

I self-similarity

I long-range dependence
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scale-free network
I the degree distribution of network nodes follows power-law

I many small-degree nodes, small number of large-degree nodes
I highest-degree nodes greatly exceed the average degree

I small-world
I compact: the average distance between 2 nodes is short
I clusters: nodes are highly clustered

I construction: preferential attachment: rich get richer
I higher probability to attach to a high-degree node

I fault-tolerance, attack-tolerance
I robust against random failures
I vulnerable to an attack to a hub node

source: Error and attack tolerance of complex networks. R. Albert, H. Jeong, A. Barabasi. Nature 406, July 2000.
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example: AS structure of the Internet
CAIDA AS CORE MAP 2009/03

I visualization of AS topology using skitter/ark data
I longitude of AS (registered location), out-degree of AS

http://www.caida.org/research/topology/as core network/ 11 / 38
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self-similarity in network traffic

I exponential model (left), real traffic (middle), self-similar
model (right)

I time scale: 10sec (top), 1 sec (middle), 0.1 sec (bottom)
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Web access and content distribution

I power-law can be observed everywhere on the web
I the number of incoming links and access count of web page,

occurrences of search keywords
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various distributions

I binomial distribution

I poisson distribution

I normal distribution

I exponential distribution

I power-law distribution
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binomial distribution

I bernoulli trial: a trial is random and has only 2 outcomes

I discrete probability distribution of the number of success k for
n trials, with the probability of success p for a trial

PDF

P[X = k] =

(
n
k

)
pk(1 − p)n−k

here (
n
k

)
=

n!

k!(n − k)!

mean : E [X ] = np, variance : Var [X ] = np(1 − p)

when n is large, a binomial distribution can be approximated by a poisson
distribution
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poisson distribution
the occurrence rate of rare events follows poisson distribution

I death toll of traffic accidents, the number of mutations of
DNA, etc

poisson distribution is expressed by a single expected value λ > 0

PDF

P(X = k) =
λke−λ

k!

mean : E [X ] = λ, variance : Var [X ] = λ
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normal distribution (1/2)
I also known as gaussian distribution
I defined by 2 parameters: µ:mean, σ2:variance
I sum of random variables follows normal distribution
I standard normal distribution: µ = 0, σ = 1
I in normal distribution

I 68% within (mean − stddev , mean + stddev)
I 95% within (mean − 2 ∗ stddev , mean + 2 ∗ stddev)
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normal distribution (2/2)
probability density function (PDF)

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

cumulative distribution function (CDF)

F (x) =
1

2
(1 + erf

x − µ

σ
√

2
)

µ : mean, σ2 : variance
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exponential distributiony
the intervals of independent events occuring at a constant rate
follow an exponential distribution

I call intervals in telephone systems, session intervals of TCP
connections, etc

PDF
f (x) = λe−λx , (x ≥ 0)

CDF
F (x) = 1 − e−λx

λ > 0 : rate parameter

mean : E [X ] = 1/λ, variance : Var [X ] = λ−2
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pareto distribution
most widely used power-law distribution in networking research
PDF

f (x) =
α

κ
(
κ

x
)α+1, (x > κ, α > 0)

CDF
F (x) = 1 − (

κ

x
)α

κ : minimum value of x , α : pareto index

mean : E [X ] =
α

α − 1
κ, (α > 1)

if α ≤ 2, variance → ∞. if α ≤ 1, mean and variance → ∞.
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CCDF

Complementary Cumulative Distribution Function (CCDF)
in power-law distribution, the tail of distribution is often of interest

ccdf: probability of observing x or more

F (x) = 1 − P[X <= x ]

I plot ccdf in log-log scale
I to see the tail of the distribution or scaling property
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plotting CCDF

to plot CDF

I sort xi , i ∈ {1, . . . , n} by value

I plot (xi ,
1
n

∑i
k=1 k)

I Y-axis is usually in linear scale

to plot CCDF

I sort xi , i ∈ {1, . . . , n} by value

I plot (xi , 1 − 1
n

∑i
k=1 k)

I both X-axis and Y-axis are in log scale
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CCDF of pareto distribution

I log-linear (left)
I exponential distribution: straight line

I log-log (right)
I pareto distribution: straight line
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previous exercise: generating normally distributed random numbers

I generating pseudo random numbers that follow the normal distribution

I write a program to generate normally distributed random
numbers with mean u and standard deviation s, using a
uniform random number generator function (e.g., rand in ruby)

I plotting a histogram

I generate random numbers that follow the standard normal
distribution, plot the histogram to confirm the standard normal
distribution.

I computing confidence intervals

I observe confidence interval changes according to sample size
use the normally distributed random number generator to
produce 10 sets of normally distributed random numbers with
mean 60 and standard deviation 10. sample size n = 4, 8, 16,
32, 64, 128, 256, 512, 1024, 2048

I compute the confidence interval of the population mean from
each sample set
use confidence level 95% and confidence interval ”±1.960 s√

n
”.

plot the results of 10 sets in a single graph. plot sample size n
on the X-axis in log-scale and mean and confidence onterval
on the Y-axis in linear scale 24 / 38



box-muller transform

basic form: creates 2 normally distributed random variables, z0 and
z1, from 2 uniformly distributed random variables, u0 and u1, in
(0, 1]

z0 = R cos(θ) =
√

−2 ln u0 cos(2πu1)

z1 = R sin(θ) =
√

−2 ln u0 sin(2πu1)

polar form: approximation without trigonometric functions
u0 and u1: uniformly distributed random variables in [−1, 1],
s = u2

0 + u2
1 (if s = 0 or s ≥ 1, re-select u0, u1)

z0 = u0

√
−2 ln s

s

z1 = u1

√
−2 ln s

s
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random number generator code by box-muller transform
# usage: box-muller.rb [n [m [s]]]

n = 1 # number of samples to output

mean = 0.0

stddev = 1.0

n = ARGV[0].to_i if ARGV.length >= 1

mean = ARGV[1].to_i if ARGV.length >= 2

stddev = ARGV[2].to_i if ARGV.length >= 3

# function box_muller implements the polar form of the box muller method,

# and returns 2 pseudo random numbers from standard normal distribution

def box_muller

begin

u1 = 2.0 * rand - 1.0 # uniformly distributed random numbers

u2 = 2.0 * rand - 1.0 # ditto

s = u1*u1 + u2*u2 # variance

end while s == 0.0 || s >= 1.0

w = Math.sqrt(-2.0 * Math.log(s) / s) # weight

g1 = u1 * w # normally distributed random number

g2 = u2 * w # ditto

return g1, g2

end

# box_muller returns 2 random numbers. so, use them for odd/even rounds

x = x2 = nil

n.times do

if x2 == nil

x, x2 = box_muller

else

x = x2

x2 = nil

end

x = mean + x * stddev # scale with mean and stddev

printf "%.6f\n", x
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plot a histogram of normally distributed random numbers
I plot a histogram of random numbers following the standard

normal distribution, and confirm that they are normally
distributed

I generate 10,000 random numbers from the standard normal
distribution, use bins with one decimal place for the histogram
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plotting a histogram

I plot a histogram using bins with one decimal place

#

# create histogram: bins with 1 digit after the decimal point

#

re = /(-?\d*\.\d+)/ # regular expression for input numbers

bins = Hash.new(0)

ARGF.each_line do |line|

if re.match(line)

v = $1.to_f

# round off to a value with 1 digit after the decimal point

offset = 0.5 # for round off

offset = -offset if v < 0.0

v = Float(Integer(v * 10 + offset)) / 10

bins[v] += 1 # increment the corresponding bin

end

end

bins.sort{|a, b| a[0] <=> b[0]}.each do |key, value|

puts "#{key} #{value}"

end
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plotting a histogram of the standard normal distribution

set boxwidth 0.1

set xlabel "x"

set ylabel "f(x)"

plot "box-muller-histogram.txt" using 1:($2/1000) with boxes notitle, \

1/sqrt(2*pi)*exp(-x**2/2) notitle with lines linetype 3

note: probability density function (PDF) of standard normal distribution

f (x) =
1

√
2π

e−x2/2
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the confidence interval of sample mean and sample size
the confidence interval becomes narrower as the sample size
increases
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assignment 1: the finish time distribution of a marathon
I purpose: investigate the distribution of a real-world data set

I data: the finish time records from honolulu marathon 2010
I http://results.sportstats.ca/res2010/honolulu.htm
I the number of finishers: 20,181

I items to submit

1. mean, standard deviation and median of the total finishers, male finishers,
and female finishers

2. the distributions of finish time for each group (total, men, and women)
I plot 3 histograms for 3 groups
I use 10 minutes for the bin size
I use the same scale for the axes to compare the 3 plots

3. CDF plot of the finish time distributions of the 3 groups

I plot 3 groups in a single graph

4. optional

I other analysis of your choice (e.g., CDF plots of age groups or
countries)

5. discussion

I describe your observations about the data and plots
I submission format: a single PDF file including item 1-5
I submission method: upload the PDF file through SFC-SFS
I submission due: 2012-11-09
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honolulu marathon data set

data format

Chip Pace Gender Category @10km @21.1 @30KM @40km

Place Time /mi # Name City ST CNT Plce/Tot Plc/Tot Category Split1 Split2 Split3 Split4

---- -------- ---- ----- -------------------- ------------ -- --- -------- ------ ------ ----- ------- ------- -------

1 02:15:18 5:10 4 Chelimo, Nicholas Ngong Hills KEN 1/10586 1/9 MElite 32:57 1:07:41 1:36:28 2:08:23

2 02:17:18 5:15 3 Limo, Richard Eldoret KEN 2/10586 2/9 MElite 32:56 1:07:40 1:36:27 2:09:37

3 02:19:54 5:21 5 Bushendich, Solomon Eldoret KEN 3/10586 3/9 MElite 32:57 1:07:40 1:36:28 2:11:25

4 02:20:58 5:23 8 Kirwa, Gibert Iten KEN 4/10586 4/9 MElite 32:56 1:07:40 1:36:28 2:12:25

5 02:22:34 5:27 1 Muindi, Jimmy Kangundo KEN 5/10586 5/9 MElite 32:56 1:08:11 1:39:02 2:15:32

6 02:22:36 5:27 2 Hussein, Mbarak Albuquerque NM USA 6/10586 6/9 MElite 32:57 1:09:57 1:40:31 2:15:45

7 02:27:25 5:38 11 Stanko, Nicholas Haslette MI USA 7/10586 7/9 MElite 32:57 1:10:22 1:41:37 2:19:13

8 02:30:20 5:45 29712 Ogura, Makoto Hiroshima Hi JPN 8/10586 1/1229 M35-39 34:11 1:13:14 1:44:42 2:22:11

9 02:32:13 5:49 9670 Gebre, Belainesh Flagstaff AZ USA 1/9830 1/12 WElite 34:33 1:14:46 1:46:59 2:24:26

10 02:33:00 5:51 F1 Zakharova, Svetlana Cheboksary RUS 2/9830 2/12 WElite 36:15 1:15:52 1:48:09 2:24:51

...

I Chip Time: finish time

I Category: MElite, WElite, M15-19, M20-24, ..., W15-29, W20-24, ...

I note some runners have ”No Age” for Category

I Country: 3-letter country code: e.g., JPN, USA

I note some runners have ”UK” for country-code
I check the number of the total finishers when you extract the finishers
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today’s exercise: CCDF plots
extract the access count of each unique content from the JAIST
server access log, plot the access count distribution in CCDF

% ./count_contents.rb sample_access_log > contents.txt

% ./make_ccdf.rb contents.txt > ccdf.txt
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extracting the access count of each unique content
# output: URL req_count byte_count

# regular expression for apache combined log format

# host ident user time request status bytes referer agent

re = /^(\S+) (\S+) (\S+) \[(.*?)\] "(.*?)" (\d+) (\d+|-) "(.*?)" "(.*?)"/

# regular expression for request: method url proto

req_re = /(\w+) (\S+) (\S+)/

contents = Hash.new([0, 0])

count = parsed = 0

ARGF.each_line do |line|

count += 1

if re.match(line)

host, ident, user, time, request, status, bytes, referer, agent = $~.captures

# ignore if the status is not success (2xx)

next unless /2\d{2}/.match(status)

if req_re.match(request)

method, url, proto = $~.captures

# ignore if the method is not GET

next unless /GET/.match(method)

parsed += 1

# count contents by request and bytes

contents[url] = [contents[url][0] + 1, contents[url][1] + bytes.to_i]

else

# match failed. print a warning msg

$stderr.puts("request match failed at line #{count}: #{line.dump}")

end

else

$stderr.puts("match failed at line #{count}: #{line.dump}") # match failed.

end

end

contents.sort_by{|key, value| -value[0]}.each do |key, value|

puts "#{key} #{value[0]} #{value[1]}"

end

$stderr.puts "# #{contents.size} unique contents in #{parsed} successful GET requests"

$stderr.puts "# parsed:#{parsed} ignored:#{count - parsed}" 34 / 38



script to convert the access count to CCDF

#!/usr/bin/env ruby

re = /^\S+\s+(\d+)\s+\d+/

n = 0

counts = Hash.new(0)

ARGF.each_line do |line|

if re.match(line)

counts[$1.to_i] += 1

n += 1

end

end

cum = 0

counts.sort.each do |key, value|

comp = 1.0 - Float(cum) / n

puts "#{key} #{value} #{comp}"

cum += value

end
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gnuplot script for plotting the content access count in
CCDF

set logscale

set xlabel "request counts"

set ylabel "CCDF"

plot "ccdf.txt" using 1:3 notitle with points
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summary

Class 5 Diversity and complexity (10/31)

I Long tail

I Web access and content distribution

I Power-law and complex systems

I exercise: power-law analysis
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next class

Class 6 Correlation (11/7)

I Online recommendation systems

I Distance

I Correlation coefficient

I exercise: correlation analysis
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