
Internet Measurement and Data Analysis (8)

Kenjiro Cho

2013-11-27

review of previous class

Class 7 Multivariate analysis (11/13)

▶ Data sensing and GeoLocation

▶ Linear regression

▶ Principal Component Analysis

▶ exercise: linear regression

2 / 49

today’s topics

Class 8 Time-series analysis

▶ Internet and time

▶ Network Time Protocol

▶ Time series analysis

▶ exercise: time-series analysis

▶ assignment 2

3 / 49

time in measurement

▶ absolute time
▶ UTC (Universal Coordinated Time)

▶ the international standard time based on atomic clocks

▶ relative time
▶ difference between events

▶ clock adjustment
▶ clock could jump forward or backward!
▶ ntp slews clock if difference is less than 128ms

4 / 49

clock uncertainty

▶ clock uncertainty
▶ synchronization

▶ difference of 2 clocks

▶ accuracy
▶ a given clock agrees with UTC

▶ resolution
▶ precision of a given clock

▶ skew
▶ change of accuracy or of synchronization with time

▶ time precision
▶ local clock skew/drift: 0.1-1sec/day
▶ NTP: synchronizes clock within 10-100ms
▶ tcpdump timestamp: 100usec-100msec (usually < 1msec)

5 / 49

PC clock
i8254 programmable interval timer

▶ free-running 16-bit down-counter
▶ driven by 1,193,182 Hz oscillator
▶ when counter becomes zero, generates interrupt, and reloads

the counter register

Latch

Clock Counter

Osc Prescaler

PD

I/O Bus

Adjust

Read

6 / 49

clock drift

▶ oscillator drift
▶ hardware error margin: 10−5

▶ 0.86 sec/day within the spec

▶ drift heavily affected by temperature

time

clock
time ideal clock

clock B

clock A

7 / 49

alternative clocks

▶ Pentium TSC (Time Stamp Counter)
▶ a 64bit free-running counter driven by CPU clock
▶ issues with variable clock rate and multi-processors

▶ ACPI (Advanced Configuration and Power Interface)
▶ a free-running counter provided by power management unit

▶ Local APIC (Advanced Programmable Interrupt Controller)
▶ timer with interrupt function embedded on each processor

▶ HPET (High Precision Event Timer)
▶ a new time specification of IA-PC
▶ built in chipsets since around 2005

▶ external clock source
▶ GPS, CDMA, shortwave radio

▶ access overhead of the interfaces

8 / 49

OS time management

▶ OS manages software clock
▶ initialized at boottime from time-of-day chip
▶ updated by hardware clock interrupts

▶ standard UNIX sets the clock counter (and divider) to
interrupt every 10ms (configurable)

9 / 49

UNIX gettimeofday

▶ older OS has only clock-interrupt resolution
▶ modern OS has much better resolution

▶ interpolate software clock by reading the remaining counter
value

▶ resolution: 838ns (1 / 1193182)

▶ inside kernel
▶ access to the i8254 register: 1-10usec
▶ conversion to struct timeval: 10-100usec

▶ user space - kernel
▶ system call overhead: 100-500usec
▶ process might be scheduled: 1-100msec or more

▶ timer events (e.g., setitimer):
▶ triggered only by timer tick (10msec by default)
▶ effects of process scheduling

10 / 49

NTP (Network Time Protocol)
▶ multiple time servers across the Internet

▶ primary servers: directly connected to UTC receivers
▶ secondary servers: synchronize with primaries
▶ tertiary servers: synchronize with secondary, etc

▶ scalability
▶ 20-30 primaries, 2000 secondaries can synchronize to < 30ms

▶ many features
▶ cope with server failures, authentication support, etc

1

2

3 3 3

2

11 / 49

NTP synchronization modes

▶ multicast (for LAN)
▶ one or more servers periodically multicast

▶ remote procedure call
▶ client requests time to a set of servers

▶ symmetric protocol
▶ pairwise synchronization with peers

12 / 49

NTP symmetric protocol
measuring offset and delay

▶ a = T2− T1 b = T3− T4
▶ clock offset: θ = (a+ b)/2, assuming symmetric round-trip
▶ roundtrip delay: δ = a− b

θ

A

B
T1 T4

T2 T3

every message contains

▶ T3: send time (current time)
▶ T2: receive time
▶ T1: send time in received message

13 / 49

NTP system model

▶ clock filter
▶ temporally smooth estimates from a given peer

▶ clock selection
▶ select subset of mutually agreeing clocks
▶ intersection algorithm: eliminate outliers
▶ clustering: pick good estimates

▶ clock combining
▶ combine into a single estimate

Network

Clock Filter

Clock
Selection

Clock
Combining Loop Filter

Phase-Locked
Oscillator

VCO

Clock Filter

Clock Filter

14 / 49

BPF timestamp on BSD Unix

▶ timestamp usually placed after 2 interrupts: recv packet,
DMA complete

▶ recv packet, DMA complete

wire

network
card

device
driver

BPF

OS

packet
recv
interrupt

DMA
complete
interrupt

packet

DMA to
OS memory

header
copy

DMA
setup

filtering

timestamp

packet input
processing

time

interrupt
service time

interrupt
service time

15 / 49

time-series analysis of network traffic

analysis of dynamic behaviors which change over time

▶ difficult for mathematical modeling

▶ only limited tools are available

topics

▶ autocorrelation

▶ stationary process

▶ long-range dependence

▶ self-similar traffic

16 / 49

autocorrelation of network traffic
▶ trends (influence from the past) and periodicity (day, week, season)

▶ autocorrelation: correlation between two values of the same variable at
different times

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 100 200 300 400 500 600

tr
af

fic
 v

ol
um

e
(b

ps
)

time (sec)

-4

-2

 0

 2

 4

 0 500 1000 1500 2000 2500 3000 3500

no
rm

al
iz

ed
 tr

af
fic

 v
ol

um
e

time (sec)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

co
rr

el
at

io
n

k

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

co
rr

el
at

io
n

k

real traffic (left) and randomly generated traffic (right) timeseries (top) and

autocorrelation (bottom)
17 / 49

autocorrelation and lag plot

▶ lag plot: scatter plot of xi and xi+k

▶ simple way to observe whether autocorrelation exists
▶ larger k can find longer cycles of repeating patterns

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07

x i
+

1

xi

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

x i
+

1

xi

sample lag plot: real traffic (left) and randomly generated traffic (right)

18 / 49

autocorrelation

▶ stochastic process
{x(t), t ∈ T}

▶ autocorrelation: correlation between two values of the same
variable at times t1 and t2

▶ autocorrelation function

R(t1, t2) = E[x(t1)x(t2)]

▶ autocovariance

Cov(t1, t2) = E((x(t1)−µt1)(x(t2)−µt2)] = E[x(t1)x(t2)]−µt1µt2

19 / 49

stationary process

▶ time-series Xt is stationary if
▶ mean does not change with time: E(Xt) = µ
▶ and autocovariance depends only on k

γk = Cov(Xt, Xt+k) = E((Xt − µ)(Xt+k − µ))

γ0 = V ar(Xt) = E((Xt − µ)2)

▶ autocorrelation coefficient
▶ autocovariance normalized by variance
▶ shows influence of the past

ρk =
γk
γ0

20 / 49

white noise

white noise: stationary process whose autocorrelation coefficient is
zero

ρk = 0 (k ̸= 0)

IID process (independent identically distributed process)
▶ white noise with constant mean and variance

▶ IID process often appears in the literature

▶ Xt is IID
▶ independent: Xt is independent (no autocorrelation)
▶ identically distributed: Xt follows the same distribution

21 / 49

non-stationary process

▶ non-stationary
▶ mean changes with time
▶ or, autocovariance changes with time

▶ hard to tackle mathematically
▶ generally, take differential time-series to make it stationary

▶ stationarity test
▶ by power spectral density

▶ if power-law exponent > 1.0, non-stationary

▶ network data: sometimes, non-stationary behaviors are
observed

▶ caused by congestion, attack, etc

22 / 49

power spectral density

▶ power spectral density of a stationary random process is the
fourier transform of the autocorrelation function

▶ from time-domain to frequency-domain

S(f) =

∫ ∞

−∞
R(τ)e−2πifτdτ

▶ power spectral density

P (f) ≡ |S(f)|2 + |S(−f)|2, 0 ≤ f < ∞

▶ power spectral density gives relative power contributed by
each frequency component

23 / 49

characteristics of power spectral density
▶ white noise: P (f) ∼ const
▶ self-similar (long-range dependence):

P (f) ∼ f−α, 0 < α ≤ 1.0
▶ 1/f fluctuation: α = 1.0
▶ non-stationary: α > 1.0

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 10 100 1000 10000

P
(f

)

f

real
surrogate

example: real traffic (red) and randomly generated traffic (green)

24 / 49

short-range dependence and long-range dependence
autocovariance shows the influence of each time difference k
sum of autocovariance of all time differences k gives a total view

▶ short-range dependence
▶

∑
k ρ(k) is finite

∞∑
k=0

|ρ(k)| < ∞

▶ ρ(k) decays at least as fast as exponentially
▶ characteristics

▶ fluctuates around mean
▶ not affected by long past

▶ long-range dependence
▶

∑
k ρ(k) is infinite

∞∑
k=0

|ρ(k)| = ∞

▶ autocorrelation coefficient decays hyperbolically
▶ characteristics

▶ values far from mean can be observed

25 / 49

self-similar traffic

network traffic is not exactly self-similar but often better modeled
than other models

▶ scale-invariant

▶ long-range dependence

▶ autocovariance decays exponentially

ρ(k) ∼ k−α (k → ∞) 0 < α < 1

▶ similarly, power spectral density decays exponentially
▶ larger contributions by low frequency components

P (f) ∼ |f |−α (f → 0)

▶ infinite variance

26 / 49

self-similarity in network traffic

▶ exponential model (left), real traffic (middle), self-similar
model (right)

▶ time scale: 10sec (top), 1 sec (middle), 0.1 sec (bottom)

0 20 40 60 80 100
Time (10sec)

0

5000

10000

15000

P
ac

k
et

 f
lo

w
 (

b
y

te
)

0 20 40 60 80 100
Time (1sec)

0

500

1000

1500

F
lo

w
 d

en
si

ty

0 20 40 60 80 100
Time (0.1sec)

0

50

100

150

F
lo

w
 d

en
si

ty

0 20 40 60 80 100
Time (1sec)

0

500

1000

1500

F
lo

w
 d

en
si

ty

0 20 40 60 80 100
Time (0.1sec)

0

50

100

150

F
lo

w
 d

en
si

ty

0 20 40 60 80 100
Time (0.1sec)

0

50

100

150

P
ac

k
et

 f
lo

w

0 20 40 60 80 100
Time (1sec)

0

500

1000

1500
P

ac
k

et
 f

lo
w

0 20 40 60 80 100
Time (10sec)

0

5000

10000

15000

F
lo

w
 d

en
si

ty

0 20 40 60 80 100
Time (10sec)

0

5000

10000

15000

F
lo

w
 d

en
si

ty

27 / 49

previous exercise: linear regression

▶ linear regression by the least square method
▶ use the data for the previous exercise

▶ correlation-data-1.txt, correlation-data-2.txt

f(x) = b0 + b1x

b1 =

∑
xy − nx̄ȳ∑
x2 − n(x̄)2

b0 = ȳ − b1x̄

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

y

x

5.75 + 0.45 * x

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

y

x

72.72 - 0.38 * x

data-1:r=0.87 (left), data-2:r=-0.60 (right)

28 / 49

script for linear regression

#!/usr/bin/env ruby

regular expression for matching 2 floating numbers

re = /([-+]?\d+(?:\.\d+)?)\s+([-+]?\d+(?:\.\d+)?)/

sum_x = sum_y = sum_xx = sum_xy = 0.0

n = 0

ARGF.each_line do |line|

if re.match(line)

x = $1.to_f

y = $2.to_f

sum_x += x

sum_y += y

sum_xx += x**2

sum_xy += x * y

n += 1

end

end

mean_x = Float(sum_x) / n

mean_y = Float(sum_y) / n

b1 = (sum_xy - n * mean_x * mean_y) / (sum_xx - n * mean_x**2)

b0 = mean_y - b1 * mean_x

printf "b0:%.3f b1:%.3f\n", b0, b1

29 / 49

adding the least squares line to scatter plot

set xrange [0:160]

set yrange [0:80]

set xlabel "x"

set ylabel "y"

plot "correlation-data-1.txt" notitle with points, \

5.75 + 0.45 * x lt 3

30 / 49

today’s exercise: autocorrelation

▶ compute autocorrelation using traffic data for 1 week

ruby autocorr.rb autocorr_5min_data.txt > autocorr.txt

head -10 autocorr_5min_data.txt

2011-02-28T00:00 247 6954152

2011-02-28T00:05 420 49037677

2011-02-28T00:10 231 4741972

2011-02-28T00:15 159 1879326

2011-02-28T00:20 290 39202691

2011-02-28T00:25 249 39809905

2011-02-28T00:30 188 37954270

2011-02-28T00:35 192 7613788

2011-02-28T00:40 102 2182421

2011-02-28T00:45 172 1511718

head -10 autocorr.txt

0 1.000

1 0.860

2 0.860

3 0.857

4 0.857

5 0.854

6 0.851

7 0.849

8 0.846

9 0.841

31 / 49

computing autocorrelation functions

autocorrelation function for time lag k

R(k) =
1

n

n∑
i=1

xixi+k

normalize by R(k)/R(0), as when k = 0, R(k) = R(0)

R(0) =
1

n

n∑
i=1

x2i

need 2n data to compute k = n

32 / 49

autocorrelation computation code

regular expression for matching 5-min timeseries

re = /^(\d{4}-\d{2}-\d{2})T(\d{2}:\d{2})\s+(\d+)\s+(\d+)/

v = Array.new() # array for timeseries

ARGF.each_line do |line|

if re.match(line)

v.push $3.to_f

end

end

n = v.length # n: number of samples

h = n / 2 - 1 # (half of n) - 1

r = Array.new(n/2) # array for auto correlation

for k in 0 .. h # for different timelag

s = 0

for i in 0 .. h

s += v[i] * v[i + k]

end

r[k] = Float(s)

end

normalize by dividing by r0

if r[0] != 0.0

r0 = r[0]

for k in 0 .. h

r[k] = r[k] / r0

printf "%d %.3f\n", k, r[k]

end

end

33 / 49

autocorrelation plot
set xlabel "timelag k (minutes)"

set ylabel "auto correlation"

set xrange [-100:5140]

set yrange [0:1]

plot "autocorr.txt" using ($1*5):2 notitle with lines

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

au
to

 c
or

re
la

tio
n

timelag k (minutes)

34 / 49

today’s exercise 2: traffic analysis
exercise data: ifbps-2011.txt

▶ interface counter values from a router providing services to
broadband users

▶ one month data from May 2011, with 2-hour resolution
▶ format: time IN(bits/sec) OUT(bits/sec)
▶ converted from the original format

▶ original format: unix time IN(bytes/sec) OUT(bytes/sec)

▶ use ”IN” traffic for exercise

 0

 100

 200

 300

 400

 500

05/07 05/14 05/21 05/28

tr
af

fic
 (

M
bp

s)

time

IN
OUT

35 / 49

plotting time-of-day traffic
▶ plot mean and standard deviation for each time of day

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20 22

T
ra

ffi
c

(M
bp

s)

time (2 hour interval)

mean
stddev

36 / 49

script to extract time-of-day traffic

time in_bps out_bps

re = /^\d{4}-\d{2}-(\d{2})T(\d{2}):\d{2}:\d{2}\s+(\d+\.\d+)\s+\d+\.\d+/

arrays to hold values for every 2 hours

sum = Array.new(12, 0.0)

sqsum = Array.new(12, 0.0)

num = Array.new(12, 0)

ARGF.each_line do |line|

if re.match(line)

matched

hour = $2.to_i / 2

bps = $3.to_f

sum[hour] += bps

sqsum[hour] += bps**2

num[hour] += 1

end

end

printf "#hour\tn\tmean\t\tstddev\n"

for hour in 0 .. 11

mean = sum[hour] / num[hour]

var = sqsum[hour] / num[hour] - mean**2

stddev = Math.sqrt(var)

printf "%02d\t%d\t%.1f\t%.1f\n", hour * 2, num[hour], mean, stddev

end

37 / 49

plot script for time-of-day traffic

set xlabel "time (2 hour interval)"

set xtic 2

set xrange [-1:23]

set yrange [0:]

set key top left

set ylabel "Traffic (Mbps)"

plot "hourly_in.txt" using 1:($3/1000000) title ’mean’ with lines, \

"hourly_in.txt" using 1:($3/1000000):($4/1000000) title "stddev" with yerrorbars lt 3

38 / 49

plotting time-of-day traffic for each day of the week
▶ plotting traffic for each day of the week

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16 18 20 22

T
ra

ffi
c

(M
bp

s)

time (2 hour interval)

Mon
Tue

Wed
Thu

Fri
Sat
Sun

39 / 49

script to extract time-of-day traffic for each day of the
week

time in_bps out_bps

re = /^\d{4}-\d{2}-(\d{2})T(\d{2}):\d{2}:\d{2}\s+(\d+\.\d+)\s+\d+\.\d+/

2011-05-01 is Sunday, add wdoffset to make wday start with Monday

wdoffset = 5

traffic[wday][hour]

traffic = Array.new(7){ Array.new(12, 0.0) }

num = Array.new(7){ Array.new(12, 0) }

ARGF.each_line do |line|

if re.match(line)

matched

wday = ($1.to_i + wdoffset) % 7

hour = $2.to_i / 2

bps = $3.to_f

traffic[wday][hour] += bps

num[wday][hour] += 1

end

end

printf "#hour\tMon\tTue\tWed\tThu\tFri\tSat\tSun\n"

for hour in 0 .. 11

printf "%02d", hour * 2

for wday in 0 .. 6

printf " %.1f", traffic[wday][hour] / num[wday][hour]

end

printf "\n"

end

40 / 49

plot script for each day of the week

set xlabel "time (2 hour interval)"

set xtic 2

set xrange [-1:23]

set yrange [0:]

set key top left

set ylabel "Traffic (Mbps)"

plot "week_in.txt" using 1:($2/1000000) title ’Mon’ with lines, \

"week_in.txt" using 1:($3/1000000) title ’Tue’ with lines, \

"week_in.txt" using 1:($4/1000000) title ’Wed’ with lines, \

"week_in.txt" using 1:($5/1000000) title ’Thu’ with lines, \

"week_in.txt" using 1:($6/1000000) title ’Fri’ with lines, \

"week_in.txt" using 1:($7/1000000) title ’Sat’ with lines, \

"week_in.txt" using 1:($8/1000000) title ’Sun’ with lines

41 / 49

correlation coefficient matrix among days of the week

▶ compute correlation coefficients between days of the week
▶ use mean of time-of-day traffic

Mon Tue Wed Thu Fri Sat Sun
Mon 1.000 0.888 0.970 0.974 0.919 0.785 0.736
Tue 0.888 1.000 0.935 0.927 0.989 0.840 0.624
Wed 0.970 0.935 1.000 0.980 0.938 0.811 0.745
Thu 0.974 0.927 0.980 1.000 0.941 0.813 0.756
Fri 0.919 0.989 0.938 0.941 1.000 0.829 0.610
Sat 0.785 0.840 0.811 0.813 0.829 1.000 0.853
Sun 0.736 0.624 0.745 0.756 0.610 0.853 1.000

42 / 49

script to compute correlation coefficient matrix

▶ use the array created for the days of the week

n = 12

for wday in 0 .. 6

for wday2 in 0 .. 6

sum_x = sum_y = sum_xx = sum_yy = sum_xy = 0.0

for hour in 0 .. 11

x = traffic[wday][hour] / num[wday][hour]

y = traffic[wday2][hour] / num[wday2][hour]

sum_x += x

sum_y += y

sum_xx += x**2

sum_yy += y**2

sum_xy += x * y

end

r = (sum_xy - sum_x * sum_y / n) /

Math.sqrt((sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n))

printf "%.3f\t", r

end

printf "\n"

end

43 / 49

assignment 2: twitter data analysis
▶ purpose: processing realworld big data
▶ data sets:

▶ twitter data for about 40M users by Kwak et al. in July 2009
▶ http://an.kaist.ac.kr/traces/WWW2010.html

▶ twitter degrees.zip (164MB, 550MB uncompressed)
▶ user id, followings, followers

▶ numeric2screen.zip (365MB, 756MB uncompressed)
▶ user id, screen name

▶ items to submit
1. CCDF plot of the distributions of twitter users’

followings/followers
▶ log-log plot, the number of followings/followers on X-axis

2. list of the top 30 users by the number of followers
▶ rank, user id, screen name, followings, followers

3. optional
▶ other analysis of your choice

4. discussion
▶ describe what you observe from the data

▶ submission: upload your report in the PDF format via
SFC-SFS

▶ submission due: 2013-12-12 (Thu) 44 / 49

twitter data sets
twitter degrees.zip (164MB, 550MB uncompressed)
id followings followers

12 586 1001061

13 243 1031830

14 106 8808

15 275 14342

16 273 218

17 192 6948

18 87 6532

20 912 1213787

21 495 9027

22 272 3791

...

numeric2screen.zip (365MB, 756MB uncompressed)
id screenname

12 jack

13 biz

14 noah

15 crystal

16 jeremy

17 tonystubblebine

18 Adam

20 ev

21 dom

22 rabble

...

45 / 49

items to submit

CCDF plot

▶ log-log plot, the number of followings/followers on X-axis

▶ plot the 2 distributions in a single graph

list of the top 30 users by the number of followersy

▶ rank, user id, screen name, followings, followers

▶ you need to sort and merge 2 files

rank id screenname followings followers

1 19058681 aplusk 183 2997469

2 15846407 TheEllenShow 26 2679639

3 16409683 britneyspears 406238 2674874

4 428333 cnnbrk 18 2450749

5 19397785 Oprah 15 1994926

6 783214 twitter 55 1959708

...

46 / 49

sort command

sort command: sorts lines in a text file

$ sort [options] [FILE ...]

▶ options (relevant to the assignment)
▶ -n : compare according to string numerical value
▶ -r : reverse the result of comparisons
▶ -k POS1[,POS2] : start a key at POS1, end it at POS 2

(origin 1)
▶ -t SEP : use SEP instead of non-blank as the field-separator
▶ -m : merge already sorted files
▶ -T DIR : use DIR for temporary files

example: sort “file” using the 3rd field as numeric value in the
reverse order , use “/usr/tmp” for temporary files

$ sort -nr -k3,3 -T/usr/tmp file

47 / 49

summary

Class 8 Time-series analysis

▶ Internet and time

▶ Network Time Protocol

▶ Time series analysis

▶ exercise: time-series analysis

▶ assignment 2

48 / 49

next class

Class 9 Topology and graph (12/4)

▶ Routing protocols

▶ Graph theory

▶ exercise: shortest-path algorithm

49 / 49

