
Internet Measurement and Data Analysis (12)

Kenjiro Cho

2015-01-19

review of previous class

Class 11 Data Mining (1/14)

▶ Pattern extraction

▶ Classification

▶ Clustering

▶ exercise: clustering

2 / 49

today’s topics

Class 12 Search and Ranking

▶ Search systems

▶ PageRank

▶ exercise: PageRank algorithm

3 / 49

computational complexity

metrics for the efficiency of an algorithm

▶ time complexity

▶ space complexity

▶ average-case complexity

▶ worst-case complexity

big O notation
▶ describe algorithms simply by the growth order of execution

time as input size n increases
▶ example: O(n), O(n2), O(n log n)

▶ more precisely, “f(n) is order g(n)” means:
for function f(n) and function g(n), f(n) = O(g(n)) ⇔ there
exist constants C and n0 such that
|f(n)| ≤ C|g(n)| (∀n ≥ n0)

4 / 49

computational complexity

▶ logarithmic time

▶ polynomial time

▶ exponential time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000

co
m

pu
ta

tio
n

tim
e

input size (n)

O(log n)
O(n)

O(n log n)
O(n**2)
O(n**3)
O(2**n)

5 / 49

example of computational complexity

search algorithms

▶ linear search: O(n)

▶ binary search: O(log2 n)

sort algorithms

▶ selection sort: O(n2)

▶ quick sort: O(n log2 n) on average, O(n2) for worst case

in general,

▶ linear algorithms (e.g., loop): O(n)

▶ binary trees: O(log n)

▶ double loops for a variable: O(n2)

▶ triple loops for a variable: O(n3)

▶ combination of variables (e.g., shortest path): O(cn)

6 / 49

distributed algorithms

parallel or concurrent algorithms

▶ split a job and process them by multiple computers

▶ issues of communication cost and synchronization

distributed algorithms

▶ assume that communications are message passing among
independent computers

▶ failures of computers and message losses

merits
▶ scalability

▶ improvement is only linear at best

▶ fault tolerance

7 / 49

scale-up and scale-out
▶ scale-up

▶ strengthen or extend a single node
▶ without issues of parallel processing

▶ scale-out
▶ extend a system by increasing the number of nodes
▶ cost performance, fault-tolerance (use of cheap off-the-shelf

computers)

scale-out

scale-up

8 / 49

cloud computing

cloud computing: various definitions

▶ broadly, computer resources behind a wide-area network

background
▶ market needs:

▶ outsourcing IT resources, management and services
▶ no initial investment, no need to predict future demands

▶ cost reduction as a result

▶ as well as risk management and energy saving, especially after
the Japan Earthquake

▶ providers: economy of scale, walled garden
▶ efficient use of resource pool

9 / 49

various clouds

▶ public/private/hybrid

▶ service classification: SaaS/PaaS/IaaS

infra provider

infra user

web service
provider

web service userend user

web services

cloud
infrastructure utility computing

web applications

platform

the Internet

users’ view services’ view

10 / 49

physical clouds

11 / 49

typical cloud network topology

core
switches

aggregation
switches

top of rack
switches

VMs

Internet

12 / 49

key technologies

▶ virtualization: OS level, I/O level, network level

▶ utility computing

▶ energy saving

▶ data center networking

▶ management and monitoring technologies

▶ automatic scaling and load balancing

▶ large-scale distributed data processing

▶ related research fields: networking, OS, distributed systems,
database, grid computing

▶ led by commercial services

13 / 49

economics of cloud

▶ economies of scale (purchase cost, operation cost, statistical
multiplexing)

▶ commodity hardware

▶ economical locations (including airconditioning, electricity,
networking)

Will Japanese clouds be competitive in the global market?
(The bigger, the better?)

14 / 49

history of search engines

most Internet users use search engines everyday
▶ 1994 Yahoo! portal started

▶ a pioneer of potal sites (directory-based)
▶ initially, they published their favorite sites for others

▶ 1995 Altavista
▶ a pioneering search engine with crawling robot, and

multi-language support
▶ issues with quality degradation by SPAM

▶ 1998 Google was established
▶ automated search engine by the PageRank algorithm
▶ web pages are scored based on the popularity of the pages

15 / 49

search engine mechanisms

▶ directory based
▶ manual registration and classification
▶ high quality, but it does not scale

▶ robot based
▶ automatically crawl web sites and create database
▶ becomes the mainstream as the number of web pages increases

16 / 49

robot-based search engine

▶ collect web pages
▶ crawling

▶ manage database of collected information
▶ index generation

▶ match web pages with a serach query
▶ search ranking

17 / 49

index generation

▶ extract keywords from web pages

▶ create inverted index from keywords to web pages

18 / 49

search ranking

when a search server receives a search query, it

▶ obtains a list of related web pages by looking up the inverted
index with the keywords

▶ orders the list by ranking, and send it back to the user

web page ranking

▶ requires a metric to show the importance of a web page

▶ PageRank: the ranking method proposed by Google

19 / 49

PageRank: basic idea

▶ score web pages only from the link relationship of web pages
▶ it does not look at content at all

source: L. Page, et al. The pagerank citation ranking: Bringing order to the web. 1998.

20 / 49

PageRank: insights
▶ high quality web pages are linked from many web pages
▶ a link from higher quality web page is more valuable
▶ as the number of links within a web page increases, the value

of each link decreases

source: L. Page, et al. The pagerank citation ranking: Bringing order to the web. 1998.

21 / 49

PageRank: model

▶ web pages linked from high quality web pages are high quality
▶ random surfer model

▶ a user clicks links within the same web page with the same
probability

source: L. Page, et al. The pagerank citation ranking: Bringing order to the web. 1998.

22 / 49

PageRank example
Page ID OutLinks

1 2, 3, 4, 5, 7
2 1
3 1, 2
4 2, 3, 5
5 1, 3, 4, 6
6 1, 5
7 5

ID = 6

ID = 5 ID = 4

ID = 3

ID = 2ID = 7

ID = 1

23 / 49

matrix model
Matrix Notation (src → dst)

A⊤ =

0 1 1 1 1 0 1
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 1 0 0
1 0 1 1 0 1 0
1 0 0 0 1 0 0
0 0 0 0 1 0 0

Transition Matrix (dst ← src): the sum of column is 1

A =

0 1 1/2 0 1/4 1/2 0
1/5 0 1/2 1/3 0 0 0
1/5 0 0 1/3 1/4 0 0
1/5 0 0 0 1/4 0 0
1/5 0 0 1/3 0 1/2 1
0 0 0 0 1/4 0 0

1/5 0 0 0 0 0 0

R = cAR

pagerank vector R is an eigen vector of Transition Matrix A, c is a reciprocal of the
eigen value

24 / 49

PageRank example: result
can be obtained by eigen value computation

ID = 6

.045

ID = 5

.179

ID = 4

.105

ID = 3

.141

ID = 2

.166

ID = 7

.061

ID = 1

.304

.061

.023

.061

.045

.023

.045

.035

.061

.045

.061

.071

.061

.035

.166

.061

.071

.035

.045

25 / 49

issues with simple PageRank model

▶ in reality
▶ there exist nodes without outgoing links (dangling node)
▶ there exist nodes without incoming links
▶ there exist loops

▶ transition probability model is Markov chain’s transition
matrix

▶ eventually converges to the equilibrium state

▶ convergence condition: the matrix is recurrent and irreducible
▶ directed graph is strongly connected (there is a directed path

from each node to every other nodes)
▶ there exists one principal eigen vector

solution: add behavior to jump to random pages with a certain
probability

26 / 49

PageRank algorithm

start from an arbitrary initial state, and repeat transitions until the
ranks of all pages converge

▶ case: node with outlinks (> 0)
▶ randomly select a link within the page with probability d
▶ jump to a random page with probability (1− d)

▶ case: dangling node (no outlink)
▶ jump to a random page

A’ = dA+ (1− d)[1/N]

d: damping factor (= 0.85)

27 / 49

computation by power iteration method

▶ eigenvalue computation is not practical for a large matrix

▶ but can be approximated by power iteration method

parameters:

d: dampig_factor = 0.85

thresh: convergence_threshold = 0.000001

initialize:

for i

r[i] = 1/N

loop:

e = 0

for i

new_r[i] = d * (sum_inlink(r[j]/degree[j]) + sum_dangling(r[j])/N)

+ (1 - d)/N

e += |new_r[i] - r[i]|

r = new_r

while e > thresh

28 / 49

PageRank convergence

▶ evaluation results show logarithmic convergence even for a
large number of web pages

T
o

ta
l

D
if

fe
re

n
c
e
 f

ro
m

 P
re

v
io

u
s
 I

te
ra

ti
o

n

source: L. Page, et al. The pagerank citation ranking: Bringing order to the web. 1998.

29 / 49

PageRank summary

▶ simple idea
▶ web pages linked from high quality web pages are high quality

▶ formalize the idea by the transition matrix of Markov chain,
and make it converge

▶ build a scalable implementation, and prove the effectiveness
by real data

▶ start business, and become a top company

▶ note: this algorithm was introduced in 1998. the current
algorithm used by Google must have evolved significantly
since then.

30 / 49

google servers

google system in 1998 and a current data center

31 / 49

today’s exercise: PageRank

% cat sample-links.txt

PageID: OutLinks

1: 2 3 4 5 7

2: 1

3: 1 2

4: 2 3 5

5: 1 3 4 6

6: 1 5

7: 5

ID = 6

.045

ID = 5

.179

ID = 4

.105

ID = 3

.141

ID = 2

.166

ID = 7

.061

ID = 1

.304

.061

.023

.061

.045

.023

.045

.035

.061

.045

.061

.071

.061

.035

.166

.061

.071

.035

.045

% ruby pagerank.rb -f 1.0 sample-links.txt

reading input...

initializing... 7 pages dampingfactor:1.00 thresh:0.000001

iteration:1 diff_sum:0.661905 rank_sum: 1.000000

iteration:2 diff_sum:0.383333 rank_sum: 1.000000

...

iteration:20 diff_sum:0.000002 rank_sum: 1.000000

iteration:21 diff_sum:0.000001 rank_sum: 1.000000

[1] 1 0.303514

[2] 5 0.178914

[3] 2 0.166134

[4] 3 0.140575

[5] 4 0.105431

[6] 7 0.060703

[7] 6 0.044728

32 / 49

PageRank code (1/4)
require ’optparse’

d = 0.85 # damping factor (recommended value: 0.85)

thresh = 0.000001 # convergence threshold

OptionParser.new {|opt|

opt.on(’-f VAL’, Float) {|v| d = v}

opt.on(’-t VAL’, Float) {|v| thresh = v}

opt.parse!(ARGV)

}

outdegree = Hash.new # outdegree[id]: outdegree of each page

inlinks = Hash.new # inlinks[id][src0, src1, ...]: inlinks of each page

rank = Hash.new # rank[id]: pagerank of each page

last_rank = Hash.new # last_rank[id]: pagerank at the last stage

dangling_nodes = Array.new # dangling pages: pages without outgoing link

read a page-link file: each line is "src_id dst_id_1 dst_id_2 ..."

ARGF.each_line do |line|

pages = line.split(/\D+/) # extract list of numbers

next if line[0] == ?# || pages.empty?

src = pages.shift.to_i # the first column is the src

outdegree[src] = pages.length

if outdegree[src] == 0

dangling_nodes.push src

end

pages.each do |pg|

dst = pg.to_i

inlinks[dst] ||= []

inlinks[dst].push src

end

end

33 / 49

PageRank code (2/4)

initialize

sanity check: if dst node isn’t defined as src, create one as a dangling node

inlinks.each_key do |j|

if !outdegree.has_key?(j)

create the corresponding src as a dangling node

outdegree[j] = 0

dangling_nodes.push j

end

end

n = outdegree.length # total number of nodes

initialize the pagerank of each page with 1/n

outdegree.each_key do |i| # loop through all pages

rank[i] = 1.0 / n

end

$stderr.printf " %d pages dampingfactor:%.2f thresh:%f\n", n, d, thresh

34 / 49

PageRank code (3/4)
compute pagerank by power method

k = 0 # iteration number

begin

rank_sum = 0.0 # sum of pagerank of all pages: should be 1.0

diff_sum = 0.0 # sum of differences from the last round

last_rank = rank.clone # copy the entire hash of pagerank

compute dangling ranks

danglingranks = 0.0

dangling_nodes.each do |i| # loop through dangling pages

danglingranks += last_rank[i]

end

compute page rank

outdegree.each_key do |i| # loop through all pages

inranks = 0.0

for all incoming links for i, compute

inranks = sum (rank[j]/outdegree[j])

if inlinks[i] != nil

inlinks[i].each do |j|

inranks += last_rank[j] / outdegree[j]

end

end

rank[i] = d * (inranks + danglingranks / n) + (1.0 - d) / n

rank_sum += rank[i]

diff = last_rank[i] - rank[i]

diff_sum += diff.abs

end

k += 1

$stderr.printf "iteration:%d diff_sum:%f rank_sum: %f\n", k, diff_sum, rank_sum

end while diff_sum > thresh 35 / 49

PageRank code (4/4)

print pagerank in the decreasing order of the rank

format: [position] id pagerank

i = 0

rank.sort_by{|k, v| -v}.each do |k, v|

i += 1

printf "[%d] %d %f\n", i, k, v

end

36 / 49

previous exercise: k-means clustering

% ruby k-means.rb km-data.txt > km-results.txt

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

Y

X

1
2
3

37 / 49

k-means clustering results

▶ different results by different initial values

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

Y

X

cluster 1
cluster 2
cluster 3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000
Y

X

cluster 1
cluster 2
cluster 3

38 / 49

k-means code (1/2)
k = 3 # k clusters

re = /^(\d+)\s+(\d+)/

INFINITY = 0x7fffffff

read data

nodes = Array.new # array of array for data points: [x, y, cluster_index]

centroids = Array.new # array of array for centroids: [x, y]

ARGF.each_line do |line|

if re.match(line)

c = rand(k) # randomly assign initial cluster

nodes.push [$1.to_i, $2.to_i, c]

end

end

round = 0

begin

updated = false

assignment step: assign each node to the closest centroid

if round != 0 # skip assignment for the 1st round

nodes.each do |node|

dist2 = INFINITY # square of dsistance to the closest centroid

cluster = 0 # closest cluster index

for i in (0 .. k - 1)

d2 = (node[0] - centroids[i][0])**2 + (node[1] - centroids[i][1])**2

if d2 < dist2

dist2 = d2

cluster = i

end

end

node[2] = cluster

end

end

39 / 49

k-means code (2/2)

update step: compute new centroids

sums = Array.new(k)

clsize = Array.new(k)

for i in (0 .. k - 1)

sums[i] = [0, 0]

clsize[i] = 0

end

nodes.each do |node|

i = node[2]

sums[i][0] += node[0]

sums[i][1] += node[1]

clsize[i] += 1

end

for i in (0 .. k - 1)

newcenter = [Float(sums[i][0]) / clsize[i], Float(sums[i][1]) / clsize[i]]

if round == 0 || newcenter[0] != centroids[i][0] || newcenter[1] != centroids[i][1]

centroids[i] = newcenter

updated = true

end

end

round += 1

end while updated == true

print the results

nodes.each do |node|

puts "#{node[0]}\t#{node[1]}\t#{node[2]}"

end

40 / 49

gnuplot script

set key left

set xrange [0:6000]

set yrange [0:6000]

set xlabel "X"

set ylabel "Y"

plot "km-results.txt" using 1:($3==0?$2:1/0) title "cluster 1" with points, \

"km-results.txt" using 1:($3==1?$2:1/0) title "cluster 2" with points, \

"km-results.txt" using 1:($3==2?$2:1/0) title "cluster 3" with points

41 / 49

on the final report

▶ select A or B
▶ A. Wikipedia pageview ranking
▶ B. free topic

▶ up to 8 pages in the PDF format

▶ submission via SFC-SFS by 2015-01-29 (Thu) 23:59

42 / 49

final report topics
A. Wikipedia pageview ranking

▶ purpose: extracting popular keywords from real datasets and
observing temporal changes

▶ data: pagecount datasets from Wikipedia English version
▶ items to submit

▶ A-1 CCDF plot of the pagecount distribution
▶ A-2 list of top 10 titles for each day and for the week
▶ A-3 plot the changes of the daily ranking of the top 10 titles
▶ A-4 other analysis (optional)

▶ optional analysis of your choice
▶ A-5 discussion on the results

▶ describe what you observe from the data

B. free topic
▶ select a topic by yourself
▶ the topic is not necessarily on networking
▶ but the report should include some form of data analysis and

discussion about data and results

more weight on the discussion for the final report
43 / 49

A. Wikipedia pageview ranking

data: pagecount datasets from Wikipedia English version
▶ original datasets provide by wikimedia

▶ http://dumps.wikimedia.org/other/pagecounts-raw/

▶ pagecount dataset for the report: en-201412.zip (790MB,
2.4GB uncompressed)

▶ hourly pagecounts of the week, Dec 1-7, 2014
▶ only for English Wikipedia, only 4 hours (00-04 UTC) for each

day (to reduce the data size)

44 / 49

data format

▶ project encoded pagetitle requests size
▶ project: wikimedia project name (all ”en” in this dataset)
▶ encoded pagetitle: URI encoded page title
▶ requests: the number of requests
▶ size: the size of the content

$ head -n 10 pagecounts-20141203-030000

en !! 1 9295

en !!! 6 103994

en !!!_(album) 2 23644

en !%20(disambiguation) 1 10393

en !%EF%BF%BD%02 1 6645

en !Adios_Amigos! 1 15951

en !Alabadle! 1 10736

en !Bang! 1 15328

en !Ciauetistico! 2 21038

en !Hero 1 10938

45 / 49

a script to decode titles

▶ titles are percent-encoded
▶ can be converted to UTF-8 by ruby’s CGI.unescape()

#!/usr/bin/env ruby

require ’cgi’

re = /^([\w\.]+)\s+(\S+)\s+(\d+)\s+(\d+)/

ARGF.each_line do |line|

if re.match(line)

project, title, requests, bytes = $~.captures

decoded_title = CGI.unescape(title)

print "#{project} \"#{decoded_title}\" #{requests} #{bytes}\n"

end

end

46 / 49

A. more on pagecount ranking

▶ A-1 CCDF plot of the pagecount distribution
▶ aggregate all the datasets, sum up all requests for each title,

and plot CCDF of the pagecount distribution
▶ a log-log plot with request count on the X-axis, CCDF on

Y-axis

▶ A-2 list of top 10 titles for each day and for the week total
▶ create a table similar to the following

rank 12/1 12/2 12/3 ... 12/7 total

1 "Main_Page" "Main_Page" "Main_Page" ... "Main_Page" "Main_Page"

2 "Ethernet_frame" "Cofferdam" "Special:HideBanners" ... "Special:HideBanners" "Special:HideBanners"

...

▶ A-3 plot the changes of the daily ranking of the top 10 titles
▶ time on X-axis, ranking on Y-axis
▶ come up with a good way by yourself to show the changes of

ranking over the week

47 / 49

summary

Class 12 Search and Ranking

▶ Search systems

▶ PageRank

▶ exercise: PageRank algorithm

48 / 49

summary of the class: what you learned in the class

▶ how to understand statistical aspects of data, and how to
process and visualize data

▶ which should be useful for writing thesis and other reports

▶ programming skills to process a large amount of data
▶ beyound what the existing package software provides

▶ ability to suspect statistical results
▶ the world is full of dubious statistical results and infomation

manipulations
▶ (improving literacy on online privacy)

▶ programming and hands-on data analysis
▶ just reading textbooks isn’t enough
▶ certain skills can be learned only through first hand experiences

49 / 49

