Internet Measurement and Data Analysis (2)

Kenjiro Cho

2014-09-29

## review of previous class

theme of the class

- looking at the Internet from different views
- learn how to measure what is difficult to measure
- learn how to extract useful information from huge data sets

Class 1 Introduction (9/22)

- Big Data and Collective Intelligence
- Internet measurement
- Large-scale data analysis
- exercise: introduction of Ruby scripting language


## today's topics

Data and variability

- Summary statistics
- Sampling
- How to make good graphs
- exercise: computing summary statistics by Ruby
- exercise: graph plotting by Gnuplot


## example: broadband traffic

- daily traffic usage per user (from IIJ, June 2014)
- highly skewed usage (note that X -axis is log-scale)
- IN (upload): mean 437MB, mode 28MB
- OUT(download): mean 1287MB, mode 447MB
- mean is not a good metric in this case



## data and variability

- variability of data
- variability in measurements against the true value
- the mean should be close to the true value
- (but, to discuss the precision, we need to understand the variability)
- variability in measured target itself
- we need to understatnd the variability
- ways to understand the variability in data
- summary statistics
- visualization by graphs


## summary statistics

numbers that summarize properties of data

- measure of location:
- mean, median, mode
- measure of spread:
- range, variance, standard deviation


## measures of location

- mean: average, sensitive to outliers

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- median: middle value (50th-percentile)

$$
x_{\text {median }}= \begin{cases}x_{r+1} & \text { when } m \text { is odd, } m=2 r+1 \\ \left(x_{r}+x_{r+1}\right) / 2 & \text { when } m \text { is even, } m=2 r\end{cases}
$$

- mode: value with highest frequency
these are same if measurements have symmetric distribution



## percentiles

- pth-percentile:
- $p \%$ of the observed values are less than $x_{p}$ in variable $x_{i}$
- median $=50$ th-percentile



## measures of spread

common measures of the spread of a data set

- range: difference between the max and min
- variance:

$$
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- standard deviation: $\sigma$
- most common measure of statistical dispersion
- can be directly compared with mean
- for a normal distribution, $68 \%$ fall into (mean $\pm$ stddev), $95 \%$ fall into (mean $\pm 2$ stddev)



## computing variance

variance:

$$
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

using the above formula, you need to compute the mean first, and then, compute the variance.
you can compute the variance in one-pass with the following formula.

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} \bar{x}+\bar{x}^{2}\right) \\
& =\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}^{2}-2 \bar{x} \sum_{i=1}^{n} x_{i}+n \bar{x}^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-2 \bar{x}^{2}+\bar{x}^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2}
\end{aligned}
$$

## sampling

- investigating the whole population (census): not realistic in most cases
- sampling is needed
sampling for the Internet
- observation points
- time, duration
- packet, flow, IP addresses, user IDs


## example: packet sampling methods

- counter-based $1 / N$ sampling (deterministic)
- simple to implement, widely used
- possible synchronization with targets of measurement
- probabilistic $1 / N$ sampling
- probabilistically select packets (or other objects)
- sampling by time
- example: take the first minute every hour
- flow-based sampling
- probabilistically sample new flows
- observe all packets belonging to a selected flow
- advantage: able to analyze flow behaviors
- many other sampling methods


## sampling: sample and population

summary statistics and statistical inference

- summary statistics: numbers that summarize properties of data (e.g., mean and standard deviation)
- statistical inference: makes inferences about the population based on samples using statistical methods
population: whole data (difficult or impossible to obtain for most cases)
- need to infer properties of the population from samples
- variables: properties of the population (fixed)
- statistics: inferred values based on samples (varying)



## law of large numbers and central limit theorem

law of large numbers

- as the number of samples increases, the sample mean converges to the population mean
central limit theorem
- the mean of a sufficiently large number of samples is approximately normally distributed, regardless of the original distribution. $N(\mu, \sigma / \sqrt{n})$
- when the population is normally distributed, it can be applied even when $n$ is small


## normal distribution

- also known as gaussian distribution
- $N(\mu, \sigma)$ : defined by 2 parameters: $\mu$ :mean, $\sigma$ :standard deviation
- sum of random variables follows normal distribution
- standard normal distribution: $\mu=0, \sigma=1$
- in normal distribution
- $68 \%$ within (mean - stddev, mean + stddev)
- $95 \%$ within (mean $-2 *$ stddev, mean $+2 *$ stddev)



## sample mean

- sample mean: $\bar{x}$

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- sample variance: $s^{2}$

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- sample standard deviation: $s$
- note: divide sum of squares by $(n-1)$, not by $n$
- degree of freedom: the number of independent variables in the sum of squares is $(n-1)$ because of $\bar{x}$


## standard error

standard error: standard deviation of sample mean ( $S E$ )

$$
S E=\sigma / \sqrt{n}
$$

- you can improve the precision by increasing the number of samples $n$
- standard error becomes smaller but with only $1 / \sqrt{n}$
- the distribution of sample mean from a normal distribution $N(\mu, \sigma)$ will be a normal distribution with mean $\mu$ and standard deviation $\mathrm{SE}=\sigma / \sqrt{n}$


## more on sample variance

sample variance: $s^{2}$

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

the reason to divide sample variance by $(n-1)$

- sample mean $\bar{x}$ fluctuates around population mean $\mu$
- if sample variance was computed by the same equation, its value $S^{2}$ would be smaller than population variance $\sigma^{2}$ if $\bar{x}$ is equal to $\mu$, and its fluctuation follows $N(\mu, \sigma / \sqrt{n})$, the variance becomes $(n-1) / n$ of the population variance.

$$
E\left(S^{2}\right)=\frac{n-1}{n} \sigma^{2}
$$

thus,

$$
\sigma^{2}=\frac{n}{n-1} S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

## graph plotting

it is not easy to understand variability in data only from summary statistics
try to plot several graphs to see characteristics of data




## example: finish-time distribution of a city marathon

## data:

- sample data from a book: P. K. Janert "Gnuplot in Action"

```
# Minutes Count
133 1
1347
1351
1364
1 3 7 3
1 3 8 3
1 4 1 7
142 24
```

number of finishers:2,355 mean:171.3(min) standard deviation:14.1 median:176(min)

## example: finish-time distribution of a city marathon (2)

histogram


## example: finish-time distribution of a city marathon (3)

 distribution of finish-time and their ranks

## guidelines for plotting

require minimum effort from the reader

- label the axes clearly
- label the tics on the axes
- identify individual curves/bars
- select appropriate font size
- use commonly accepted practices
- zero-origins, math symbols, acronyms
- show variation/distribution of variables
- select ranges properly
- do not present too many items in a single chart
- when comparing data sets, use appropriate normalization
- when comparing plots, use the same scale for the axes
- do not use pie-charts or 3D-effects for technical writing
- when using colors
- make sure it is readable in black-and-white print
- make sure readable on data projectors (e.g., do not use yellow)


## plotting raw data

- time series plots
- histograms
- probability plots
- scatter plots
there are many other plotting techniques


## time series plots

time-series plots (or other sequence plots) provides a feel for the data

- you can identify
- shifts in locations
- shifts in variation
- outliers



## histograms (1/2)

## to see distribution of the data set

- split the data into equal-sized bins by value
- count the frequency of each bin
- plot
- X axis: variable
- Y axis: frequency



## histograms (2/2)

with histograms

- you can identify
- center (i.e., the location) of the data
- spread (i.e., the scale) of the data
- skewness of the data
- presence of outliers
- presence of multiple modes in the data
limitations of histograms
- needs appropriate bin size
- too small: each bin doesn't have enough samples (e.g., empty bins)
- too large: only few regions available
- difficult for highly skewed distribution
- enough samples needed


## probability density function (pdf)

- normalize the frequency (count)
- sum of the area under the histogram to be 1
- divide the count by the total number of observations times the bin width
- probability density function: probability of observing $x$

$$
f(x)=P[X=x]
$$



## cumulative distribution function (cdf)

- density function: probability of observing $x$

$$
f(x)=P[X=x]
$$

- cumulative distribution function: probability of observing $x$ or less

$$
F(x)=P[X<=x]
$$

- better than histogram when distribution is highly skewed, sample count is not enough, or outliers are not negligible



## histogram vs cdf

- no need to worry about bin size or sample count for cdf



original data (left), 100 samples (right), cdfs (bottom)


## interquartile range

- interquartile range (IQR): range between 1st quartile and 3rd quartile (middle 50\%)
- boxplot: one way to show the dispersion
- box: 25/50/75-percentiles, whiskers: min/max
- many variations
- whisker to inner fance $\left(Q_{1}-1.5 I Q R, Q_{3}+1.5 I Q R\right)$, with outliers
- use of mean and standard deviation rather than quartiles



## boxplot example

- applied to the previous data sets (original vs 100 samples)
- wiskers: min and max

original

100 samples

## scatter plots

- explores relationships between 2 variables
- X-axis: variable X
- Y-axis: corresponding value of variable Y
- you can identify
- whether variables X and Y related
- no relation, positive correlation, negative correlation
- whether the variation in Y changes depending on X
- outliers
- examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative correlation -0.5 (right)



examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative correlation -0.5 (right)


## plotting tools

- gnuplot
- command-line tool suitable for automated plotting
- http://gnuplot.info/
- grace
- comes with graphical user interface
- powerful for fine-tuning the output
- http://plasma-gate.weizmann.ac.il/Grace/


## previous exercise: a program to count text lines

count the number of text lines in a file given by the argument

```
filename = ARGV[0]
count = 0
file = open(filename)
while text = file.gets
    count += 1
end
file.close
puts count
```

write to "count.rb" and then run it \$ ruby count.rb foo.txt
rewrite it in a more rubyish way

```
#!/usr/bin/env ruby
count = 0
ARGF.each_line do |line|
    count += 1
end
puts count
```


## exercise: computing summary statistics

- mean
- standard deviation
- median
- finish-time data of a city marathon: from P. K. Janert "Gnuplot in Action"
http://web.sfc.keio.ac.jp/~kjc/classes/sfc2014f-measurement/marathon.txt
\% head marathon.txt
\# Minutes Count
1331
1347
1351
1364
1373
1383
1417
14224
14313


## exercise: computing mean

- read finish-time(in minutes) and the number of finishers from each line, sum up the product, and finally divide it by the total number of finishers

```
# regular expression to read minutes and count
re = /^ (\d+)\s+(\d+)/
sum = 0 # sum of data
n = 0 # the number of data
ARGF.each_line do |line|
    if re.match(line)
        min = $1.to_i
        cnt = $2.to_i
        sum += min * cnt
        n += cnt
    end
end
mean = Float(sum) / n
printf "n:%d mean:%.1f\n", n, mean
```

\% ruby mean.rb marathon.txt
$\mathrm{n}: 2355$ mean:171.3

## exercise: computing standard deviation

- algorithm: $\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

```
# regular expression to read minutes and count
re = /~ (\d+ )\s+(\d+)/
data = Array.new
sum = 0 # sum of data
n = 0 # the number of data
ARGF.each_line do |line|
    if re.match(line)
        min = $1.to_i
        cnt = $2.to_i
        sum += min * cnt
        n += cnt
        for i in 1 .. cnt
            data.push min
        end
    end
end
mean = Float(sum) / n
sqsum = 0.0
data.each do |i|
    sqsum += (i - mean)**2
end
var = sqsum / n
stddev = Math.sqrt(var)
printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev
```

\% ruby stddev.rb marathon.txt
n:2355 mean:171.3 variance:199.9 stddev:14.1

## exercise: computing standard deviation in one-pass

- one-pass algorithm: $\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2}$

```
# regular expression to read minutes and count
re = /~ (\d+)\s+(\d+)/
sum = 0 # sum of data
n = 0 # the number of data
sqsum = 0 # su of squares
ARGF.each_line do |line|
    if re.match(line)
        min = $1.to_i
        cnt = $2.to_i
        sum += min * cnt
        n += cnt
        sqsum += min**2 * cnt
    end
end
mean = Float(sum) / n
var = Float(sqsum) / n - mean**2
stddev = Math.sqrt(var)
printf "n:%d mean:%.1f variance:%.1f stddev:%.1f\n", n, mean, var, stddev
```

\% ruby stddev2.rb marathon.txt
$\mathrm{n}: 2355$ mean:171.3 variance:199.9 stddev:14.1

## exercise: computing median

- create an array of each finish time, sort the array by value, and extract the central value

```
# regular expression to read minutes and count
re = /~ (\d+)\s+(\d+)/
data = Array.new
ARGF.each_line do |line|
    if re.match(line)
        min = $1.to_i
        cnt = $2.to_i
        for i in 1... cnt
            data.push min
        end
    end
end
data.sort! # just in case data is not sorted
n = data.length # number of array elements
r = n / 2 # when n is odd, n/2 is rounded down
if n % 2 != 0
    median = data[r]
else
    median = (data[r - 1] + data[r])/2
end
printf "r:%d median:%d\n", r, median
```

\% ruby median.rb marathon.txt
r:1177 median:176

## exercise: gnuplot

- plotting simple graphs using gnuplot
- to intuitively understand the data



## histogram

- distribution of finish time of a city marathon
plot "marathon.txt" using 1:2 with boxes
make the plot look better (right)
set boxwidth 1
set xlabel "finish time (minutes)"
set ylabel "count"
set yrange [0:180]
set grid y
plot "marathon.txt" using 1:2 with boxes notitle



## exercise: plotting CDF of finish-time original data:

\# Minutes Count
1331
1347
1351
1364
1373
1383
1417
14224
add cumulative count:
\# Minutes Count CumulativeCount
13311
13478
13519
136413
137316
138319
141726
1422450

## exercise: CDF (2)

ruby code:

```
re = /~ (\d+)\s+(\d+)/
cum = 0
ARGF.each_line do |line|
    begin
        if re.match(line)
                # matched
            time, cnt = $~}.captures
            cum += cnt.to_i
            puts "#{time}\t#{cnt}\t#{cum}"
        end
    end
end
```


## gnuplot command:

```
set xlabel "finish time (minutes)"
set ylabel "CDF"
set grid y
plot "marathon-cdf.txt" using 1:($3 / 2355) with lines notitle
```


## CDF plot of finish-time of city marathon



## exercise: saving a plot to an image file

to specify an image format and save to a file:

```
gnuplot> set terminal png
gnuplot> set output "plotfile.png"
gnuplot> replot
```

to run a script:
gnuplot> load "scriptfile"
to exit:
gnuplot> exit

## summary

Data and variability

- Summary statistics
- Sampling
- How to make good graphs
- exercise: graph plotting by Gnuplot


## next class

Class 3 Data recording and log analysis (10/6)

- Network management tools
- Data format
- Log analysis methods
- exercise: log data and regular expression

