# Internet Measurement and Data Analysis (2)

Kenjiro Cho

2014-09-29

#### review of previous class

#### theme of the class

- looking at the Internet from different views
  - learn how to measure what is difficult to measure
  - learn how to extract useful information from huge data sets

#### Class 1 Introduction (9/22)

- Big Data and Collective Intelligence
- Internet measurement
- Large-scale data analysis
- exercise: introduction of Ruby scripting language

## today's topics

#### Data and variability

- Summary statistics
- Sampling
- How to make good graphs
- exercise: computing summary statistics by Ruby
- exercise: graph plotting by Gnuplot

### example: broadband traffic

- daily traffic usage per user (from IIJ, June 2014)
  - highly skewed usage (note that X-axis is log-scale)
  - ► IN (upload): mean 437MB, mode 28MB
  - OUT(download): mean 1287MB, mode 447MB
- mean is not a good metric in this case



## data and variability

- variability of data
  - variability in measurements against the true value
    - ▶ the mean should be close to the true value
    - (but, to discuss the precision, we need to understand the variability)
  - variability in measured target itself
    - we need to understatnd the variability
- ways to understand the variability in data
  - summary statistics
  - visualization by graphs

### summary statistics

#### numbers that summarize properties of data

- measure of location:
  - ▶ mean, median, mode
- measure of spread:
  - range, variance, standard deviation

#### measures of location

mean: average, sensitive to outliers

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

median: middle value (50th-percentile)

$$x_{median} = \left\{ \begin{array}{ll} x_{r+1} & \text{when } m \text{ is odd, } m = 2r+1 \\ (x_r + x_{r+1})/2 & \text{when } m \text{ is even, } m = 2r \end{array} \right.$$

▶ mode: value with highest frequency

these are same if measurements have symmetric distribution



# percentiles

- pth-percentile:
  - p% of the observed values are less than  $x_p$  in variable  $x_i$
  - ► median = 50th-percentile



#### measures of spread

common measures of the spread of a data set

- range: difference between the max and min
- variance:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

- standard deviation: σ
  - most common measure of statistical dispersion
  - can be directly compared with mean
- ▶ for a normal distribution, 68% fall into  $(mean \pm stddev)$ , 95% fall into  $(mean \pm 2stddev)$



#### computing variance

variance:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

using the above formula, you need to compute the mean first, and then, compute the variance.

you can compute the variance in one-pass with the following formula.

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$= \frac{1}{n} (\sum_{i=1}^{n} x_{i}^{2} - 2\bar{x} \sum_{i=1}^{n} x_{i} + n\bar{x}^{2})$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - 2\bar{x}^{2} + \bar{x}^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2}$$

### sampling

- investigating the whole population (census): not realistic in most cases
- sampling is needed

#### sampling for the Internet

- observation points
- time, duration
- packet, flow, IP addresses, user IDs

### example: packet sampling methods

- ightharpoonup counter-based 1/N sampling (deterministic)
  - simple to implement, widely used
  - possible synchronization with targets of measurement
- ightharpoonup probabilistic 1/N sampling
  - probabilistically select packets (or other objects)
- sampling by time
  - example: take the first minute every hour
- flow-based sampling
  - probabilistically sample new flows
  - observe all packets belonging to a selected flow
  - advantage: able to analyze flow behaviors
- many other sampling methods

### sampling: sample and population

summary statistics and statistical inference

- summary statistics: numbers that summarize properties of data (e.g., mean and standard deviation)
- statistical inference: makes inferences about the population based on samples using statistical methods

population: whole data (difficult or impossible to obtain for most cases)

- need to infer properties of the population from samples
- variables: properties of the population (fixed)
- statistics: inferred values based on samples (varying)



## law of large numbers and central limit theorem

#### law of large numbers

► as the number of samples increases, the sample mean converges to the population mean

#### central limit theorem

- ▶ the mean of a sufficiently large number of samples is approximately normally distributed, regardless of the original distribution.  $N(\mu, \sigma/\sqrt{n})$
- when the population is normally distributed, it can be applied even when n is small

#### normal distribution

- also known as gaussian distribution
- ▶  $N(\mu, \sigma)$ : defined by 2 parameters:  $\mu$ :mean,  $\sigma$ :standard deviation
- sum of random variables follows normal distribution
- standard normal distribution:  $\mu = 0, \sigma = 1$
- in normal distribution
  - ▶ 68% within (mean stddev, mean + stddev)
  - ▶ 95% within (mean 2 \* stddev, mean + 2 \* stddev)



### sample mean

ightharpoonup sample mean:  $\bar{x}$ 

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

sample variance: s<sup>2</sup>

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

- sample standard deviation: s
- ▶ note: divide sum of squares by (n-1), not by n
  - $\blacktriangleright$  degree of freedom: the number of independent variables in the sum of squares is (n-1) because of  $\bar{x}$

#### standard error

standard error: standard deviation of sample mean (SE)

$$SE = \sigma/\sqrt{n}$$

- you can improve the precision by increasing the number of samples n
  - standard error becomes smaller but with only  $1/\sqrt{n}$
- the distribution of sample mean from a normal distribution  $N(\mu,\sigma)$  will be a normal distribution with mean  $\mu$  and standard deviation SE  $=\sigma/\sqrt{n}$

#### more on sample variance

sample variance:  $s^2$ 

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

the reason to divide sample variance by (n-1)

- lacktriangle sample mean ar x fluctuates around population mean  $\mu$
- if sample variance was computed by the same equation, its value  $S^2$  would be smaller than population variance  $\sigma^2$  if  $\bar{x}$  is equal to  $\mu$ , and its fluctuation follows  $N(\mu,\sigma/\sqrt{n})$ , the variance becomes (n-1)/n of the population variance.

$$E(S^2) = \frac{n-1}{n}\sigma^2$$

thus.

$$\sigma^2 = \frac{n}{n-1}S^2 = \frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2$$

# graph plotting

it is not easy to understand variability in data only from summary statistics

try to plot several graphs to see characteristics of data



## example: finish-time distribution of a city marathon

#### data:

sample data from a book: P. K. Janert "Gnuplot in Action"

```
# Minutes Count
133 1
134 7
135 1
136 4
137 3
138 3
141 7
142 24
...
```

number of finishers:2,355 mean:171.3(min) standard deviation:14.1 median:176(min)

# example: finish-time distribution of a city marathon (2)

#### histogram



# example: finish-time distribution of a city marathon (3)

distribution of finish-time and their ranks



# guidelines for plotting

require minimum effort from the reader

- label the axes clearly
- label the tics on the axes
- identify individual curves/bars
- select appropriate font size
- use commonly accepted practices
  - zero-origins, math symbols, acronyms
- show variation/distribution of variables
- select ranges properly
- do not present too many items in a single chart
- when comparing data sets, use appropriate normalization
- when comparing plots, use the same scale for the axes
- do not use pie-charts or 3D-effects for technical writing
- when using colors
  - make sure it is readable in black-and-white print
  - make sure readable on data projectors (e.g., do not use yellow)

## plotting raw data

- time series plots
- histograms
- probability plots
- scatter plots

there are many other plotting techniques

## time series plots

time-series plots (or other sequence plots) provides a feel for the data

- you can identify
  - shifts in locations
  - shifts in variation
  - outliers



# histograms (1/2)

to see distribution of the data set

- split the data into equal-sized bins by value
- count the frequency of each bin
- plot
  - X axis: variable
  - ► Y axis: frequency



# histograms (2/2)

#### with histograms

- you can identify
  - center (i.e., the location) of the data
  - spread (i.e., the scale) of the data
  - skewness of the data
  - presence of outliers
  - presence of multiple modes in the data

#### limitations of histograms

- needs appropriate bin size
  - too small: each bin doesn't have enough samples (e.g., empty bins)
  - too large: only few regions available
  - difficult for highly skewed distribution
- enough samples needed

# probability density function (pdf)

- normalize the frequency (count)
  - ▶ sum of the area under the histogram to be 1
  - divide the count by the total number of observations times the bin width
- probability density function: probability of observing x



# cumulative distribution function (cdf)

ightharpoonup density function: probability of observing x

$$f(x) = P[X = x]$$

 cumulative distribution function: probability of observing x or less

$$F(x) = P[X \le x]$$

better than histogram when distribution is highly skewed, sample count is not enough, or outliers are not negligible



#### histogram vs cdf

no need to worry about bin size or sample count for cdf



original data (left), 100 samples (right), cdfs (bottom)

#### interquartile range

- ▶ interquartile range (IQR): range between 1st quartile and 3rd quartile (middle 50%)
- boxplot: one way to show the dispersion
  - ▶ box: 25/50/75-percentiles, whiskers: min/max
  - many variations
    - whisker to inner fance  $(Q_1 1.5IQR, Q_3 + 1.5IQR)$ , with outliers
    - use of mean and standard deviation rather than quartiles



### boxplot example

- applied to the previous data sets (original vs 100 samples)
- wiskers: min and max





#### scatter plots

- explores relationships between 2 variables
  - ► X-axis: variable X
  - Y-axis: corresponding value of variable Y
- you can identify
  - whether variables X and Y related
    - ▶ no relation, positive correlation, negative correlation
  - whether the variation in Y changes depending on X
  - outliers
- examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative correlation -0.5 (right)



examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative correlation -0.5 (right)

### plotting tools

- gnuplot
  - command-line tool suitable for automated plotting
  - http://gnuplot.info/
- grace
  - comes with graphical user interface
  - powerful for fine-tuning the output
  - http://plasma-gate.weizmann.ac.il/Grace/

## previous exercise: a program to count text lines

count the number of text lines in a file given by the argument

```
filename = ARGV[0]
 count = 0
 file = open(filename)
 while text = file.gets
   count += 1
 end
 file.close
 puts count
write to "count.rb" and then run it
 $ ruby count.rb foo.txt
rewrite it in a more rubyish way
 #!/usr/bin/env ruby
 count = 0
 ARGF.each_line do | line|
   count += 1
 end
 puts count
```

## exercise: computing summary statistics

- mean
- standard deviation
- median
- ► finish-time data of a city marathon: from P. K. Janert "Gnuplot in Action"

http://web.sfc.keio.ac.jp/~kjc/classes/sfc2014f-measurement/marathon.txt

```
% head marathon.txt
# Minutes Count
133 1
134 7
135 1
136 4
137 3
138 3
141 7
142 24
143 13
```

## exercise: computing mean

read finish-time(in minutes) and the number of finishers from each line, sum up the product, and finally divide it by the total number of finishers

```
# regular expression to read minutes and count
re = /^(d+)/s+(d+)/
sum = 0 # sum of data
n = 0 # the number of data
ARGF.each line do | line |
    if re.match(line)
      min = $1.to i
      cnt = $2.to_i
      sum += min * cnt
      n += cnt
    end
end
mean = Float(sum) / n
printf "n:%d mean:%.1f\n", n, mean
% ruby mean.rb marathon.txt
n:2355 mean:171.3
```

## exercise: computing standard deviation

▶ algorithm:  $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$ 

```
# regular expression to read minutes and count
re = /^(\d+)\s+(\d+)/
data = Arrav.new
sim = 0 \# sim of data
n = 0 # the number of data
ARGF.each line do |line|
    if re.match(line)
      min = $1.to i
      cnt = $2.to_i
      sum += min * cnt
      n += cnt
      for i in 1 .. cnt
        data.push min
      end
    end
end
mean = Float(sum) / n
sqsum = 0.0
data.each do lil
 sqsum += (i - mean)**2
end
var = sqsum / n
stddev = Math.sgrt(var)
printf "n: %d mean: %.1f variance: %.1f stddev: %.1f\n", n, mean, var, stddev
```

## exercise: computing standard deviation in one-pass

• one-pass algorithm:  $\sigma^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2$ 

```
# regular expression to read minutes and count
re = /^(\d+)\s+(\d+)/
sum = 0 # sum of data
n = 0 # the number of data
sgsum = 0 # su of squares
ARGF.each_line do |line|
    if re.match(line)
     min = $1.to i
     cnt = $2.to_i
     sum += min * cnt
      n += cnt
     sqsum += min**2 * cnt
    end
end
mean = Float(sum) / n
var = Float(sqsum) / n - mean**2
stddev = Math.sgrt(var)
printf "n:%d mean: %.1f variance: %.1f stddev: %.1f \n", n, mean, var, stddev
% ruby stddev2.rb marathon.txt
```

n:2355 mean:171.3 variance:199.9 stddev:14.1

# exercise: computing median

 create an array of each finish time, sort the array by value, and extract the central value

```
# regular expression to read minutes and count
re = /^(\d+)\s+(\d+)/
data = Arrav.new
ARGF.each line do |line|
    if re.match(line)
      min = $1.to_i
      cnt = $2.to_i
      for i in 1 .. cnt
        data.push min
      end
    end
end
data.sort! # just in case data is not sorted
n = data.length # number of array elements
r = n / 2 \# when n is odd, n/2 is rounded down
if n % 2 != 0
 median = data[r]
else
 median = (data[r - 1] + data[r])/2
end
printf "r: %d median: %d\n", r, median
```

# exercise: gnuplot

- plotting simple graphs using gnuplot
  - ▶ to intuitively understand the data



## histogram

distribution of finish time of a city marathon

```
plot "marathon.txt" using 1:2 with boxes
```

#### make the plot look better (right)

```
set boxwidth 1
set xlabel "finish time (minutes)"
set ylabel "count"
set yrange [0:180]
set grid y
```

plot "marathon.txt" using 1:2 with boxes notitle





# exercise: plotting CDF of finish-time original data:

```
# Minutes Count
133 1
134 7
135 1
136 4
137 3
138 3
141 7
142 24
```

. . .

#### add cumulative count:

```
# Minutes Count CumulativeCount
133 1 1
134 7 8
135 1 9
136 4 13
137 3 16
138 3 19
141 7 26
142 24 50
```

# exercise: CDF (2)

#### ruby code:

```
re = /^(\d+)\s+(\d+)/
cum = 0
ARGF.each_line do |line|
begin
   if re.match(line)
     # matched
     time, cnt = $~.captures
     cum += cnt.to_i
     puts "#{time}\t#{cnt}\t#{cum}"
   end
end
```

#### gnuplot command:

```
set xlabel "finish time (minutes)"
set ylabel "CDF"
set grid y
plot "marathon-cdf.txt" using 1:($3 / 2355) with lines notitle
```

# CDF plot of finish-time of city marathon



# exercise: saving a plot to an image file

to specify an image format and save to a file:
gnuplot> set terminal png
gnuplot> set output "plotfile.png"
gnuplot> replot

to run a script:
gnuplot> load "scriptfile"

to exit:

gnuplot> exit

#### summary

## Data and variability

- Summary statistics
- Sampling
- How to make good graphs
- exercise: graph plotting by Gnuplot

#### next class

Class 3 Data recording and log analysis (10/6)

- Network management tools
- Data format
- Log analysis methods
- exercise: log data and regular expression