
Internet Measurement and Data Analysis (6)

Kenjiro Cho

2014-11-17

review of previous class

Class 5 Diversity and complexity (11/10)

▶ Long tail

▶ Web access and content distribution

▶ Power-law and complex systems

▶ exercise: power-law analysis

2 / 44

today’s topics

Class 6 Correlation

▶ Online recommendation systems

▶ Distance

▶ Correlation coefficient

▶ exercise: correlation analysis

3 / 44

online recommender systems

▶ finding potential needs for long-tail users at EC sites
▶ by recommending products which fit each user’s taste

▶ widely used as the cost goes down by recomender package
software

source: http://longtail.com/

4 / 44

http://longtail.com/

recommender systems

▶ from user online behavior, infer useful information for users
automatically

▶ EC sites: recommend products automatically from purchase or
view records

▶ other applications: music, movies, search engine, etc

different approaches for database structure

▶ item based: compile data for each item

▶ user based: compile data for each user

▶ most systems combine both

5 / 44

prediction methods of recommender systems

▶ content based:
▶ recommend items similar to the items the user used in the past

▶ (manual) classifications of items
▶ clustering items by machine learning methods
▶ building rules from know-how

▶ tend to recommend items in the same group, less surprising

▶ collaborative filtering: employed by amazon and others
▶ e.g., ”users who bought X also bought Y”
▶ compute similarities among users from their online activities
▶ recommend items bought by similar users
▶ main feature: it does not use the information about items
▶ could lead to surprising findings for user (serendipity)

▶ naive bayesian filter: often used for spam filtering
▶ machine-learning technique to compute probabilities from a

large number of item and user attributes

6 / 44

recent advances in targeted advertising

▶ targeted advertising
▶ advertisements intended to reach specific consumer groups
▶ so as to improve the effectiveness and cost-benefit

▶ online advertising networks
▶ web services that connect advertisers to web publishers
▶ e.g., a banner advertisement at a personal web site

▶ Real Time Bidding
▶ platform for real-time auction of online advertisements
▶ web publishers offer display space on user’s visit

▶ with user’s attributes and activity history (tracked by cookies)

▶ bid managers provides a platform for auction
▶ advertisers place a bid for advertisement

▶ decide the price based on the provided information
▶ retargetting: for users who visited the advertising company in

the past

▶ RTB auction process completes in less than 100ms

7 / 44

collaborative filtering
▶ several well-known algorithms
▶ example: simple correlation analysis between users

▶ compute correlation between users to find similar users
▶ rate item as a sum of others’ scores weighted by the similarity

example: purchase history

item
user a b c d e f · · ·
A 1 1 1 · · ·
B 1 1 · · ·
C 1 1 · · ·
D 1 1 1 · · ·
· · · · · ·

compute the scores of items that A does not have but A’s similar users have

similarity item
user σ a b c d e f · · ·
A 1 1 1 1 · · ·
S 0.88 0.88 - 0.88 · · ·
C 0.81 0.81 - - · · ·
K 0.75 - - - · · ·
F 0.73 0.73 0.73 0.73 · · ·
score 2.50 0.73 1.61 · · ·

8 / 44

Example: Netflix Prize

▶ an open annual competition for collaborative filtering
algorithms to predict user ratings for movies

▶ sponsored by Netflix, an online DVD-rental/download service
company

▶ competition: data set
< user id,movie id, date of grade, grade >

▶ training data set (100 million ratings)
▶ qualifying data set (2.8 million ratings)

▶ quiz data set (1.4 million)
▶ test data set (1.4 million)

▶ results are scored by root mean squared error

▶ competition started in 2006 and ended in 2009
▶ criticized by privacy advocates

9 / 44

distances

various distances

▶ Euclidean distance

▶ standardized Euclidean distance

▶ Minkowski distance

▶ Mahalanobis distance

similarities

▶ binary vector similarities

▶ n-dimensional vector similarities

10 / 44

properties of distance

a metric of distance d(x, y) between 2 points (x, y) in space
positivity

d(x, y) ≥ 0

d(x, y) = 0 ⇔ x = y

symmetry
d(x, y) = d(y, x)

triangle inequality

d(x, z) ≤ d(x, y) + d(y, z)

11 / 44

Euclidean distance

word “distance” usually means “Euclidean distance”
a distance of 2 points (x, y) in a n-dimensional space

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2

(x1, y1)

(x2, y2)

x

y

distance

euclidean distance in 2-dimensional space

12 / 44

standardized Euclidean distance

▶ when variances are different among variables, distances are
affected.

▶ standard Euclidean distance: normalized by dividing the
Euclidean distance by the variance of each variable

d(x, y) =

√√√√ n∑
k=1

(
xk
sk

− yk
sk

)2 =

√√√√ n∑
k=1

(xk − yk)2

s2k

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

y

x

13 / 44

Minkowski distance
generalization of Euclidean distance: as parameter r grows, a short
cut crossing different axes is preferred more

d(x, y) = (

n∑
k=1

|xk − yk|r)
1
r

▶ r = 1: Manhattan distance
▶ Hamming distance: for 2 strings of equal length, the number

of positions at which the corresponding symbols are different.
▶ example: the hamming distance of 111111 and 101010 is 3

▶ r = 2: Euclidean distance

Manhattan distance vs. Euclidean distance

14 / 44

vector norm (1/2)
vector norm: the length of a vector

∥x∥ where x is a vector

the ln-norm of x is defined by Minkowski distance as

∥x∥n = n

√∑
i

|xi|n

l0-norm: the total number of non-zero elements in a vector

∥x∥0 = #(i|xi ̸= 0)

l1-norm: sum of absolute difference

∥x∥1 =
∑
i

|xi|

l2-norm: Euclidean distance

∥x∥2 =

√∑
i

|xi|2

l∞-norm: the maximum entry’s magnitude of a vector

∥x∥∞ = max(|xi|)

15 / 44

vector norm (2/2)

For the example vector x = (1, 2, 3)

∥x∥0 3 = 3.000

∥x∥1 6 = 6.000

∥x∥2
√
14 = 3.742

∥x∥3 62/3 = 3.302

∥x∥4 21/4
√
7 = 3.146

∥x∥∞ 3 = 3.000

unit circles of lp-norm with various values of p

16 / 44

Mahalanobis distance

a distance that takes correlations into account, when correlation
exists between variables

mahalanobis(x, y) = (x− y)Σ−1(x− y)T

here, Σ−1 is the inverse matrix of its covariance matrix

17 / 44

similarities

similarity

▶ numerical measure of how alike 2 data objects are

properties of similarity
positivity

0 ≤ s(x, y) ≤ 1

s(x, y) = 1 ⇔ x = y

symmetry
s(x, y) = s(y, x)

in general, triangle inequality does not apply to similarities

18 / 44

similarity between binary vectors
Jaccard coefficient

▶ used for similarity between binary vectors in which the
occurrences of 1 is much smaller than the occurrences of 0

▶ example: as a metric of similarity by occurrences of words in
documents

▶ many words do not appear in both documents ⇒ not
considered

▶ the following table shows the relationship of each item

vector y
1 0

vector x 1 n11 n10

0 n01 n00

Jaccard coefficient:

J =
n11

n11 + n10 + n01

19 / 44

similarity between vectors
similarity between (non-binary) vectors

▶ example: similarity of documents where frequencies of words
are also taken into consideration

cosine similarity

▶ take the angle (cosine) of (x, y) of vectors
▶ normalized by the length of the vector ⇒ length is not

considered

cos(x, y) =
x · y

∥x∥∥y∥
x · y =

∑n
k=1 xkyk : product of vectors

∥x∥ =
√∑n

k=1 x
2
k =

√
x · x : length of the vector

x

y

20 / 44

example: cosine similarity

x = 3 2 0 5 0 0 0 2 0 0
y = 1 0 0 0 0 0 0 1 0 2

x · y = 3 ∗ 1 + 2 ∗ 1 = 5
∥x∥ =

√
3 ∗ 3 + 2 ∗ 2 + 5 ∗ 5 + 2 ∗ 2 =

√
42 = 6.481

∥y∥ =
√
1 ∗ 1 + 1 ∗ 1 + 2 ∗ 2 =

√
6 = 2.449

cos(x, y) = 5
6.481∗2.449 = 0.315

21 / 44

scatter plots and correlation

▶ explores relationships between 2 variables
▶ X-axis: variable X
▶ Y-axis: corresponding value of variable Y

▶ you can identify
▶ whether variables X and Y related

▶ no relation, positive correlation, negative correlation

▶ correlation coefficient: a measure of the strength and
direction of correlation

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

examples: positive correlation 0.7 (left), no correlation 0.0 (middle), negative

correlation -0.5 (right)

22 / 44

correlation
▶ covariance:

σ2
xy =

1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

▶ correlation coefficient:

ρxy =
σ2
xy

σxσy
=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

▶ correlation coefficient: the covariance of 2 variables
normalized by their product of their standard deviations, a
value between −1 and +1 inclusive.

▶ sensitive to outliers. so, you should use a scatter plot to
observe outliers.

▶ correlation and causality
▶ correlation does not imply causal relationship

▶ third factor C causes both A and B (e.g., break and test score)
▶ coincidence

23 / 44

computing correlation coefficient (1)
sum of squares

n∑
i=1

(xi − x̄)
2

=

n∑
i=1

(x
2
i − 2xix̄ + x̄

2
)

=
n∑

i=1

x
2
i − 2x̄

n∑
i=1

xi + n x̄
2

=
n∑

i=1

x
2
i − 2x̄ · n x̄ + n x̄

2

=
n∑

i=1

x
2
i − n x̄

2
=

n∑
i=1

x
2
i −

(
∑n

i=1 xi)
2

n

sum of products

n∑
i=1

(xi − x̄)(yi − ȳ) =
n∑

i=1

(xiyi − xiȳ − x̄yi + x̄ȳ)

=
n∑

i=1

xiyi − x̄
n∑

i=1

yi − ȳ
n∑

i=1

xi + n x̄ȳ

=
n∑

i=1

xiyi − x̄ · n ȳ − ȳ · n x̄ + n x̄ȳ

=

n∑
i=1

xiyi − n x̄ȳ =

n∑
i=1

xiyi −
(
∑n

i=1 xi)(
∑n

i=1 yi)

n

24 / 44

computing correlation coefficient (2)

correlation coefficient

ρxy =
σ2
xy

σxσy
=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

=

∑n
i=1 xiyi − n x̄ȳ√

(
∑n

i=1 x
2
i − n x̄2)(

∑n
i=1 y

2
i − n ȳ2)

=

∑n
i=1 xiyi −

(
∑n

i=1 xi)(
∑n

i=1 yi)

n√
(
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

n
)(
∑n

i=1 y
2
i − (

∑n
i=1 yi)2

n
)

25 / 44

other correlation coefficients

▶ Pearson’s product-moment correlation coefficient
▶ or simply ”correlation coefficient” (what we have learned)

▶ rank correlation coefficient: relationships between different
rankings on the same set of items

▶ Spearman’s rank correlation coefficient
▶ Kendall’s rank correlation coefficient

▶ others

26 / 44

previous exercise: CCDF plots
extract the access count of each unique content from the JAIST
server access log, plot the access count distribution in CCDF

% ./count_contents.rb sample_access_log > contents.txt

% ./make_ccdf.rb contents.txt > ccdf.txt

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

C
C

D
F

request counts

27 / 44

extracting the access count of each unique content
output: URL req_count byte_count

regular expression for apache combined log format

host ident user time request status bytes referer agent

re = /^(\S+) (\S+) (\S+) \[(.*?)\] "(.*?)" (\d+) (\d+|-) "(.*?)" "(.*?)"/

regular expression for request: method url proto

req_re = /(\w+) (\S+) (\S+)/

contents = Hash.new([0, 0])

count = parsed = 0

ARGF.each_line do |line|

count += 1

if re.match(line)

host, ident, user, time, request, status, bytes, referer, agent = $~.captures

ignore if the status is not success (2xx)

next unless /2\d{2}/.match(status)

if req_re.match(request)

method, url, proto = $~.captures

ignore if the method is not GET

next unless /GET/.match(method)

parsed += 1

count contents by request and bytes

contents[url] = [contents[url][0] + 1, contents[url][1] + bytes.to_i]

else

match failed. print a warning msg

$stderr.puts("request match failed at line #{count}: #{line.dump}")

end

else

$stderr.puts("match failed at line #{count}: #{line.dump}") # match failed.

end

end

contents.sort_by{|key, value| -value[0]}.each do |key, value|

puts "#{key} #{value[0]} #{value[1]}"

end

$stderr.puts "# #{contents.size} unique contents in #{parsed} successful GET requests"

$stderr.puts "# parsed:#{parsed} ignored:#{count - parsed}" 28 / 44

access count of each unique content

% cat contents.txt

/project/linuxonandroid/Ubuntu/12.04/full/ubuntu1204-v4-full.zip 25535 17829045760

/project/morefont/xiongmaozhongwen.apk 10949 13535294486

/project/morefont/zhongguoxin.apk 9047 9549531354

/project/honi/some_software/Windows/Office_Plus_2010_SP1_W32_xp911.com.rar 5616 4593067866

/project/morefont/fangzhengyouyijian.apk 5609 2879391721

/pub/Linux/CentOS/5.9/extras/i386/repodata/repomd.xml 5121 12213484

/pub/Linux/CentOS/5.9/updates/i386/repodata/repomd.xml 5006 10969621

/pub/Linux/CentOS/5.9/os/i386/repodata/repomd.xml 4953 6832653

/project/npppluginmgr/xml/plugins.md5.txt 4881 1369547

/project/winpenpack/X-LenMus/releases/X-LenMus_5.3.1_rev5.zip 4689 990250462

...

/pub/Linux/openSUSE/distribution/12.3/repo/oss/suse/x86_64/gedit-3.6.2-2.1.2.x86_64.rpm 1 262448

/pub/sourceforge/n/nz/nzbcatcher/source/?C=D;O=A 1 1075

/ubuntu/pool/universe/m/mmass/mmass_5.4.1.orig.tar.gz 1 3754849

29 / 44

script to convert the access count to CCDF

#!/usr/bin/env ruby

re = /^\S+\s+(\d+)\s+\d+/

n = 0

counts = Hash.new(0)

ARGF.each_line do |line|

if re.match(line)

counts[$1.to_i] += 1

n += 1

end

end

cum = 0

counts.sort.each do |key, value|

comp = 1.0 - Float(cum) / n

puts "#{key} #{value} #{comp}"

cum += value

end

30 / 44

cumulative access counts

% cat ccdf.txt

1 84414 1.0

2 9813 0.2315731022366253

3 5199 0.14224463601358184

4 3034 0.0949177537254331

5 1636 0.06729902688137779

6 1083 0.05240639764048316

7 663 0.04254776838138241

8 495 0.03651243024769468

9 367 0.03200640856417214

10 274 0.028665580366489807

...

5616 1 3.6412296432475344e-05

9047 1 2.730922232441202e-05

10949 1 1.8206148216237672e-05

25535 1 9.103074108174347e-06

31 / 44

gnuplot script for plotting the content access count in
CCDF

set logscale

set xlabel "request counts"

set ylabel "CCDF"

plot "ccdf.txt" using 1:3 notitle with points

32 / 44

today’s exercise: computing correlation coefficient

▶ compute correlation coefficient using the sample data sets
▶ correlation-data-1.txt, correlation-data-2.txt

correlation coefficient

ρxy =
σ2
xy

σxσy
=

∑n
i=1 xiyi −

(
∑n

i=1 xi)(
∑n

i=1 yi)

n√
(
∑n

i=1 x
2
i − (

∑n
i=1 xi)2

n
)(
∑n

i=1 y
2
i − (

∑n
i=1 yi)2

n
)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

y

x

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

y

x

data-1:r=0.87 (left), data-2:r=-0.60 (right)

33 / 44

script to compute correlation coefficient

#!/usr/bin/env ruby

regular expression for matching 2 floating numbers

re = /([-+]?\d+(?:\.\d+)?)\s+([-+]?\d+(?:\.\d+)?)/

sum_x = 0.0 # sum of x

sum_y = 0.0 # sum of y

sum_xx = 0.0 # sum of x^2

sum_yy = 0.0 # sum of y^2

sum_xy = 0.0 # sum of xy

n = 0 # the number of data

ARGF.each_line do |line|

if re.match(line)

x = $1.to_f

y = $2.to_f

sum_x += x

sum_y += y

sum_xx += x**2

sum_yy += y**2

sum_xy += x * y

n += 1

end

end

r = (sum_xy - sum_x * sum_y / n) /

Math.sqrt((sum_xx - sum_x**2 / n) * (sum_yy - sum_y**2 / n))

printf "n:%d r:%.3f\n", n, r

34 / 44

today’s exercise 2: similarity

▶ compute similarity in data
▶ data from “Programming Collective Intelligence” Section 2
▶ movie rating scores of 7 people: scores.txt

% cat scores.txt

A dictionary of movie critics and their ratings of a small set of movies

’Lisa Rose’: ’Lady in the Water’: 2.5, ’Snakes on a Plane’: 3.5, ’Just My Luck’: 3.0, ’Superman Returns’: 3.5, ’You, Me and Dupree’: 2.5, ’The Night Listener’: 3.0

’Gene Seymour’: ’Lady in the Water’: 3.0, ’Snakes on a Plane’: 3.5, ’Just My Luck’: 1.5, ’Superman Returns’: 5.0, ’The Night Listener’: 3.0, ’You, Me and Dupree’: 3.5

’Michael Phillips’: ’Lady in the Water’: 2.5, ’Snakes on a Plane’: 3.0, ’Superman Returns’: 3.5, ’The Night Listener’: 4.0

’Claudia Puig’: ’Snakes on a Plane’: 3.5, ’Just My Luck’: 3.0, ’The Night Listener’: 4.5, ’Superman Returns’: 4.0, ’You, Me and Dupree’: 2.5

’Mick LaSalle’: ’Lady in the Water’: 3.0, ’Snakes on a Plane’: 4.0, ’Just My Luck’: 2.0, ’Superman Returns’: 3.0, ’The Night Listener’: 3.0, ’You, Me and Dupree’: 2.0

’Jack Matthews’: ’Lady in the Water’: 3.0, ’Snakes on a Plane’: 4.0, ’The Night Listener’: 3.0, ’Superman Returns’: 5.0, ’You, Me and Dupree’: 3.5

’Toby’: ’Snakes on a Plane’:4.5,’You, Me and Dupree’:1.0,’Superman Returns’:4.0

35 / 44

score data

▶ simplistic example: data is too small

▶ summarized in the following table

#name: ’Lady in the Water’ ’Snakes on a Plane’ ’Just My Luck’ ’Superman Returns’ ’The Night Listener’

Lisa Rose: 2.5 3.5 3.0 3.5 3.0

Gene Seymour: 3.0 3.5 1.5 5.0 3.0

Michael Phillips: 2.5 3.0 - 3.5 4.0

Claudia Puig: - 3.5 3.0 4.0 4.5

Mick LaSalle: 3.0 4.0 2.0 3.0 3.0

Jack Matthews: 3.0 4.0 - 5.0 3.0

Toby: - 4.5 - 4.0 -

36 / 44

similarity computation

▶ create a similarity matrix using cosine similarity

% ruby similarity.rb scores.txt

Lisa Rose: 1.000 0.959 0.890 0.921 0.982 0.895 0.708

Gene Seymour: 0.959 1.000 0.950 0.874 0.962 0.979 0.783

Michael Phillips: 0.890 0.950 1.000 0.850 0.929 0.967 0.693

Claudia Puig: 0.921 0.874 0.850 1.000 0.875 0.816 0.695

Mick LaSalle: 0.982 0.962 0.929 0.875 1.000 0.931 0.727

Jack Matthews: 0.895 0.979 0.967 0.816 0.931 1.000 0.822

Toby: 0.708 0.783 0.693 0.695 0.727 0.822 1.000

37 / 44

similarity computation script (1/2)
regular expression to read data

’name’: ’title0’: score0, ’title1’: score1, ...

re = /’(.+?)’:\s+(\S.*)/

name2uid = Hash.new # keeps track of name to uid mapping

title2tid = Hash.new # keeps track of title to tid mapping

scores = Hash.new # scores[uid][tid]: score of title_id by user_id

read data into scores[uid][tid]

ARGF.each_line do |line|

if re.match(line)

name = $1

ratings = $2.split(",")

if name2uid.has_key?(name)

uid = name2uid[name]

else

uid = name2uid.length

name2uid[name] = uid

scores[uid] = {} # create empty hash for title and score pairs

end

ratings.each do |rating|

if rating.match(/’(.+?)’:\s*(\d\.\d)/)

title = $1

score = $2.to_f

if title2tid.has_key?(title)

tid = title2tid[title]

else

tid = title2tid.length

title2tid[title] = tid

end

scores[uid][tid] = score

end

end

end

end
38 / 44

similarity computation script (2/2)
compute cosine similarity between 2 users

def comp_similarity(h1, h2)

sum_xx = 0.0 # sum of x^2

sum_yy = 0.0 # sum of y^2

sum_xy = 0.0 # sum of xy

score = 0.0 # similarity score

h1.each do |tid, score|

sum_xx += score**2

if h2.has_key?(tid)

sum_xy += score * h2[tid]

end

end

h2.each_value do |score|

sum_yy += score**2

end

denom = Math.sqrt(sum_xx) * Math.sqrt(sum_yy)

if denom != 0.0

score = sum_xy / denom

end

return score

end

create n x n matrix of similarities between users

n = name2uid.length

similarities = Array.new(n) { Array.new(n) }

for i in 0 .. n - 1

printf "%-18s", name2uid.key(i) + ’:’

for j in 0 .. n - 1

similarities[i][j] = comp_similarity(scores[i], scores[j])

printf "%.3f ", similarities[i][j]

end

print "\n"

end 39 / 44

more realistic data set
▶ MovieLens:

http://grouplens.org/datasets/movielens/
▶ dataset for collaborative filtering research by Univ. of

Minnesota
▶ movie ratings by users, data size:100K, 1M, 10M

▶ u.data: rating data set
▶ dataset includes other info (e.g., demographic info about the

users, info about movies)

% head u.data

#user_id item_id rating timestamp

196 242 3 881250949

186 302 3 891717742

22 377 1 878887116

244 51 2 880606923

166 346 1 886397596

298 474 4 884182806

115 265 2 881171488

253 465 5 891628467

305 451 3 886324817

6 86 3 883603013

...

40 / 44

http://grouplens.org/datasets/movielens/

assignment 1: the finish time distribution of a marathon
▶ purpose: investigate the distribution of a real-world data set

▶ data: the finish time records from honolulu marathon 2013
▶ http://www.pseresults.com/events/568/results
▶ the number of finishers: 22,089

▶ items to submit

1. mean, standard deviation and median of the total finishers, male finishers,
and female finishers

2. the distributions of finish time for each group (total, men, and women)
▶ plot 3 histograms for 3 groups
▶ use 10 minutes for the bin size
▶ use the same scale for the axes to compare the 3 plots

3. CDF plot of the finish time distributions of the 3 groups

▶ plot 3 groups in a single graph
4. discuss differences in finish time between male and female. what can you

observe from the data?

5. optional

▶ other analysis of your choice (e.g., discussion on differences
among age groups)

▶ submission format: a single PDF file including item 1-5
▶ submission method: upload the PDF file through SFC-SFS
▶ submission due: 2014-11-19 (extended)

41 / 44

honolulu marathon data set

data format

Place Num Chip Lname Fname Country Division Div Div Sex Sex 10Km 21Km 30Km 40Km Pace

Time Plc Tot Plc Total

1 6 2:18:47 Chepkwony Gilbert KEN MElite 1 8 1 11789 0:34:24 1:11:42 1:40:41 2:12:14 5:18

2 2 2:19:22 Chelimo Nicholas KEN MElite 2 8 2 11789 0:34:25 1:11:43 1:40:41 2:12:40 5:19

3 7 2:19:38 Bushendich Solomon KEN MElite 3 8 3 11789 0:34:25 1:11:43 1:40:41 2:12:51 5:20

4 4 2:20:09 Adihana Gebretsadik ETH MElite 4 8 4 11789 0:34:24 1:11:42 1:40:41 2:13:16 5:21

5 8 2:20:25 Kimutai Kiplimo KEN MElite 5 8 5 11789 0:34:25 1:11:42 1:40:41 2:13:21 5:22

6 1 2:21:16 Lel Martin KEN MElite 6 8 6 11789 0:34:24 1:11:42 1:40:41 2:13:51 5:24

7 5 2:21:51 Tadesse Abraham ERI MElite 7 8 7 11789 0:34:24 1:11:42 1:40:41 2:14:27 5:25

8 45 2:22:52 Jefferson Fidele USA M35-39 1 1315 8 11789 0:34:24 1:11:43 1:40:49 2:15:29 5:27

9 25742 2:23:20 Tsukamoto Shuji JPN M30-34 1 1279 9 11789 0:34:22 1:11:40 1:40:52 2:15:52 5:28

10 25767 2:31:13 Hino Yuya JPN M20-24 1 702 10 11789 0:34:22 1:12:25 1:45:10 2:22:57 5:47

...

▶ Chip Time: finish time

▶ Category: MElite, WElite, M15-19, M20-24, ..., W15-29, W20-24, ...

▶ note some runners have ”No Age” for Category
▶ Country: 3-letter country code: e.g., JPN, USA

▶ check the number of the total finishers when you extract the finishers

42 / 44

summary

Class 6 Correlation

▶ Online recommendation systems

▶ Distance

▶ Correlation coefficient

▶ exercise: correlation analysis

43 / 44

next class

Class 7 Multivariate analysis (12/1)

▶ Data sensing and GeoLocation

▶ Linear regression

▶ Principal Component Analysis

▶ exercise: linear regression

▶ assignment 2

44 / 44

