
Internet Measurement and Data Analysis (10)

Kenjiro Cho

2016-06-20

review of previous class

Class 9 Topology and graph (6/13)

▶ Routing protocols

▶ Graph theory

▶ exercise: shortest-path algorithm

2 / 52

today’s topics

Class 10 Anomaly detection and machine learning

▶ Anomaly detection

▶ Machine Learning

▶ SPAM filtering and Bayes theorem

▶ exercise: naive Bayesian filter

3 / 52

anomalies

▶ traffic problems

▶ routing problems, reachability problems

▶ DNS problems

▶ attacks, intrusions

▶ CPU load problems

4 / 52

causes of anomalies

▶ access concentration, congestion

▶ attacks: DoS, viruses/worms

▶ outages: equipment failures, circuit failures, accidents, power
outages

▶ maintenance

5 / 52

anomaly detection

▶ avoid or reduce losses caused by service degradation or
disruption

▶ monitoring individual items: post an alert when the monitored
value exceeds the predefined threshold

▶ passive monitoring
▶ active monitoring

▶ signature based anomaly detection:
▶ pattern matching with known anomalies
▶ IDS: Intrusion Detection System
▶ cannot detect unknown anomalies
▶ need to keep the pattern database up-to-date

▶ anomaly detection by statistical methods:
▶ detect discrepancies from normal states
▶ in general, need to learn “normal” states

6 / 52

responses to anomalies

▶ report to system administrators
▶ posting alert messages

▶ identifying types of anomalies
▶ provide information to help operators to understand the cause

of the problem
▶ difficult to find causes, especially for statistical methods

▶ automated responses
▶ automatically generating filtering rules, failover, etc

7 / 52

anomaly examples

▶ Flash Crowd
▶ access concentration to specific services (news, events, etc)

▶ DoS/DDoS
▶ send a large volume of traffic to a specific host
▶ zombie PCs are often used as attackers

▶ scanning
▶ for most cases, to find hosts having known security holes

▶ worms/viruses
▶ many incidents (SQL Slammer, Code Red, etc)

▶ route hijacking
▶ announcing someone else’s prefixes (mostly by

mis-configuration)

8 / 52

YouTube hijacked

▶ 2008-02-24: worldwide traffic to YouTube was redirected to
Pakistan

▶ cause
▶ by the order of Pakistan government, Pakistan Telecom

announced a false prefix on BGP in order to block domestic
access to YouTube

▶ a large ISP, PCCW, leaked the announce to the global Internet
▶ as a result, worldwide traffic to YouTube was redirected to

Pakistan by the false route announcement

reference:
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtmly

9 / 52

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml

communication service disruption by Taiwan earthquake
▶ 2006-12-26: M7.1 earthquake occurred off the coast of Taiwan
▶ submarine cables were damaged, communication services

to/from Asia were affected
▶ Indonesia’s international link capacity became less than 20%
▶ ISPs restored services by rerouting

source: JANOG26

http://www.janog.gr.jp/meeting/janog26/doc/post-cable.pdf
10 / 52

http://www.janog.gr.jp/meeting/janog26/doc/post-cable.pdf

Great East Japan Earthquake

▶ a number of foreshocks and hundreds of aftershocks

▶ affected significant part of communications infrastructure

 4

 5

 6

 7

 8

 9

 10

03/05 03/12 03/19 03/26

m
a

g
n

it
u

d
e

Earthquakes larger than Magnitude 4 in Japan for March 2011

11 / 52

Traffic at IX

▶ less impact in Osaka on March 11

Traffic at JPNAP Tokyo1 (top) and Osaka (bottom) on 3.11

12 / 52

Summary of events at IIJ

March 11, Friday:

▶ M9.0 quake hit at 14:46, the tsunami first reached coastline in 20 min

▶ Sendai DC lost external power, switched to in-house power generator within 2
min

▶ 2 redundant backbone links to Sendai DC down, and lost connectivity to 6
prefectures in Tohoku

▶ From 23:00, undersea cables started failing. Some of the US links down, links to
Asia down

March 12, Saturday:

▶ One backbone link to Sendai restored at about 6:00

▶ Sendai DC restored external power at around 11:30

▶ One of the damaged US-links recovered around 21:00

March 13, Sunday:

▶ The other backbone link to Sendai was up at around 21:30

▶ Most of the backbone connectivity was restored by then

March 14, Monday:

▶ Business started. Service restoration and rescue activities started.

13 / 52

Residential Broadband Traffic

▶ severe damage and gradual recovery in Miyagi

▶ but limited impact to the total traffic in Japan

Residential traffic for March 2011, Miyagi prefecture (top) and nationwide (bottom)

14 / 52

JP-US links
▶ redundancy and over-provisioning worked

Traffic on 3 JP-US links for March 2011, damaged (top) not-damaged (middle) and

rerouted (bottom) 15 / 52

anomaly detection by statistical methods

▶ time-series

▶ correlation

▶ PCA

▶ clustering

▶ entropy

16 / 52

machine learning

▶ automatically acquire knowledge or rules
▶ algorithms that become more intelligent via experiences

▶ limitations of providing knowledge/rurles by humans

▶ learning methods
▶ supervised learning

▶ requires training beforehand using test data

▶ unsupervised learning
▶ automatically performs classification or pattern extraction
▶ no training required
▶ cluster analysis, PCA, etc

17 / 52

applications of machine learning

▶ wide variety of applications
▶ defining feature vectors: by extracting features from input
▶ feature extraction: domain specific

▶ image recognition, handwriting recognition, face recognition,
user behavior analysis, sensor data, etc

▶ relying on domain specific knowledge

▶ learning by analyzing feature vectors
▶ generic machine learning techniques can be applied once

feature vectors are obtained

▶ recent trend: automatic feature extraction by feature learning
▶ extracting important information from unclassified data (e.g.,

PCA)
▶ deep learning

18 / 52

classifiers by supervised learning

▶ simple perceptron
▶ linear classifier
▶ used for support vector machine, neural networks, etc

▶ naive baysian classifier
▶ classifier based on statistical model
▶ widely used for SPAM filters

19 / 52

simple perceptron
▶ a model of neurons

▶ binary classifier by liner predictor function
▶ sets weights on multiple inputs, and outputs 1/0

▶ linear separability: finding hyperplane to separate input space
▶ convergence can be guaranteed if inputs are linear separable

▶ adjust weights by learning
▶ when output is wrong, slightly adjust weights

▶ support vector machine (SVM): one of linear classifiers
▶ algorithm to maximize margin
▶ kernel trick: mapping non-linear inputs into linear space

x
1

x
2

x
3

x
n

Σ

w
1

w
2

w
3

w
n

1/0...

simple perceptron

20 / 52

neural networks
▶ model of interconnected neurons in brain
▶ multilayer perceptrons

▶ possible to solve non-linear problems
▶ feedforward model: signals travel only to destination
▶ recurrent model: with feedback

▶ back propagation: a representative learning method by
propergaing errors backwards

▶ can be used for both supervised and unsupervised learning
▶ self-organization by learning proximity on feature space

x
1

x
2

x
3

out
1

out
2

Input Layer Hidden Layer Output Layer

neural network
21 / 52

deep learning
▶ deep learning

▶ structure: neural networks with deep layers
▶ function: automated feature extraction (feature learning)

▶ many research results since 2012
▶ outperforms other models in many fields

▶ brought not by technical breakthrough
▶ parallel processing: suited for GPGPU or large-scale clusters

▶ feature learning automated: easy to use

x
1

x
2

x
3

out
1

out
2

Input Layer Hidden Layer Output Layer

...

...

...

...

deep learning model

22 / 52

identifying and filtering SPAM email

SPAM: unsolicited bulk messages
SPAM test methods

▶ tests by senders
▶ white lists
▶ black lists
▶ gray listing

▶ tests by content
▶ bayesian spam filter: widely used
▶ learns frequencies of words from SPAM and HAM email,

calculate a probability for an email to be SPAM
▶ the accuracy improves as it is used

23 / 52

conditional probability

Question:

▶ Student K leaves behind his cap once every 5 times. He
visited 3 friends, A, B and C in this order and when he came
home he found his cap was left behind. What is the
probability that K left his cap at B’s house? (1976, Waseda
University, entrance exam)

24 / 52

conditional probability

Question:

▶ Student K leaves behind his cap once every 5 times. He
visited 3 friends, A, B and C in this order and when he came
home he found his cap was left behind. What is the
probability that K left his cap at B’s house? (1976, Waseda
University, entrance exam)

Answer:

A

B

C

1/5 = 25/125

4/5 x 1/5 = 20/125

4/5 x 4/5 x 1/5 = 16/125

the prob. of the cap left at B / the prob. of the cap left at either house = 20/61

25 / 52

Bayes’ theorem

conditional probability
▶ the probability of B when A is known to occur: P (B|A)

▶ the sample space is restricted to event A, within which the
area (A ∩B) is of interest

P (B|A) = P (A ∩B)

P (A)

Bayes’ theorem

▶ posterior probability: when A causes B, the probability of
event A occurring given that event B has occurred: P (A|B)

▶ P (A): the probability of A to occur (prior probability)
▶ P (A|B): the probability of A occurring given that B has

occurred (posterior probability)

P (A|B) =
P (B|A)P (A)

P (B)
=

P (A ∩B)

P (B)

26 / 52

applications of bayes’ theorem

based on the observations, inferring the probability of a cause:
many engineering applications

▶ communications: based on received signal with noise, extract
original signal

▶ medical tests: based on a medical test result, find the
probability of a person actually having the disease

▶ spam tests: based on the content of email, find the probability
of an email being spam

27 / 52

example: disease test

Question:

▶ the population ratio having a certain disease is 50/1000. a
test for the disease is known to have positive for 90% of
people having the disease but also have positive for 10% of
people not having the disease.
when a person get positive by this test, what is the probability
of the person actually having the disease?

28 / 52

example: disease test

Question:

▶ the population ratio having a certain disease is 50/1000. a
test for the disease is known to have positive for 90% of
people having the disease but also have positive for 10% of
people not having the disease.
when a person get positive by this test, what is the probability
of the person actually having the disease?

Answer: the probability of the person having the disease:
P (D) = 50/1000 = 0.05
the probability of a result to be positive: P (R) = P (D ∩R) + P (D̄ ∩R)
when the result is positive, the posterior probability that the person has the
disease

P (D|R) =
P (D ∩R)

P (R)

= (0.05× 0.9)/(0.05× 0.9 + 0.95× 0.1) = 0.321

29 / 52

spam email tests

▶ for training, prepare spam messages (SPAM) and non-spam
messages (HAM)

▶ for words often included in SPAM, compute
▶ the conditional probability that SPAM include a word
▶ the conditional probability that HAM include a word

▶ then, compute the posterior probability of an unknown
message being SPAM

example: for word A, assume P (A|S) = 0.3, P (A|H) = 0.01,
P (H)
P (S) = 2. then, compute P (S|A).

P (S|A) =
P (S)P (A|S)

P (S)P (A|S) + P (H)P (A|H)

=
P (A|S)

P (A|S) + P (A|H)P (H)/P (S)

=
0.3

0.3 + 0.01× 2
= 0.94

30 / 52

naive Bayesian classifier

▶ in practice, multiple tokens are used
▶ combinations of tokens require huge data

▶ naive Bayesian classifier: assumes tokens are independent
▶ tokens are not independent, but it works most of the cases
▶ training step:

▶ using classified training samples, compute the conditional
probabilities of tokens being included in SPAM

▶ prediction step:
▶ for unknown messages, compute the posterior probabilities of

tokens included in a message to decide whether the message is
SPAM or HAM

▶ in the training step, the conditional probability of each token
can be independently computed

▶ use Bayesian joint probability to compute the joint probability
for SPAM testing from individual token’s SPAM probability

31 / 52

naive Bayesian classifier (details)
let tokens be x1, x2, . . . , xn. when these tokens are observed, the posterior probability of a message being
SPAM is:

P (S|x1, . . . , xn) =
P (S)P (x1, . . . , xn|S)

P (x1, . . . , xn)

the numerator shows the joint probability of the token to be observed and the message is SPAM, and thus, can be
written as follows. by applying the definition of conditional probability:

P (S, x1, . . . , xn) = P (S)P (x1, . . . , xn|S)

= P (S)P (x1|S)P (x2, . . . , xn|S, x1)

= P (S)P (x1|S)P (x2|S, x1)P (x3, . . . , xn|S, x1, x2)

assume each token is conditionally independent from other tokens

P (xi|S, xj) = P (xi|S)

then, the above joint probability becomes

P (S, x1, . . . , xn) = P (S)P (x1|S)P (x2|S) · · ·P (xn|S) = P (S)
n∏

i=1

P (xi|S)

thus, assuming tokens are independent, the posterior probability of the message being SPAM is

P (S|x1, . . . , xn) =
P (S)

∏n
i=1 P (xi|S)

P (S)
∏n

i=1 P (xi|S) + P (H)
∏n

i=1 P (xi|H)

32 / 52

today’s exercise: SPAM filtering

▶ SPAM filtering using naive bayesian classifier
▶ based on the code from “Programming Collective Intelligence”

Chapter 6

% ruby naivebayes.rb

classifying "quick rabbit" => good

classifying "quick money" => bad

33 / 52

naive bayesian classifier for the exercise

compute the propbability of a document to be classified into a
specific category by words appearing in the dicument

P (C)

n∏
i=1

P (xi|C)

▶ P (C): the probability of the category

▶
∏n

i=1 P (xi|C): product of the conditional probability of each
word in the category

select the category with the highest probability

▶ threshold： the probability of the best category should be
thresh times higher than that of the second best category

34 / 52

SPAM classifier script

▶ training and classifier

create a classifier instance

cl = NaiveBayes.new

training

cl.train(’Nobody owns the water.’,’good’)

cl.train(’the quick rabbit jumps fences’,’good’)

cl.train(’buy pharmaceuticals now’,’bad’)

cl.train(’make quick money at the online casino’,’bad’)

cl.train(’the quick brown fox jumps’,’good’)

classify

sample_data = ["quick rabbit", "quick money"]

sample_data.each do |s|

print "classifying \"#{s}\" => "

puts cl.classify(s, default="unknown")

end

35 / 52

script: Classifier Class (1/2)
feature extraction

def getwords(doc)

words = doc.split(/\W+/)

words.map!{|w| w.downcase}

words.select{|w| w.length < 20 && w.length > 2 }.uniq

end

base class for classifier

class Classifier

def initialize

initialize arrays for feature counts, category counts

@fc, @cc = {}, {}

end

def getfeatures(doc)

getwords(doc)

end

increment feature/category count

def incf(f, cat)

@fc[f] ||= {}

@fc[f][cat] ||= 0

@fc[f][cat] += 1

end

increment category count

def incc(cat)

@cc[cat] ||= 0

@cc[cat] += 1

end

...

36 / 52

script: Classifier Class (2/2)
def fprob(f,cat)

if catcount(cat) == 0

return 0.0

end

the total number of times this feature appeared in this

category divided by the total number of items in this category

Float(fcount(f, cat)) / catcount(cat)

end

when the sample size is small, fprob is not reliable.

so, make it start with 0.5 and converge to fprob as the number grows

def weightedprob(f, cat, weight=1.0, ap=0.5)

calculate current probability

basicprob = fprob(f, cat)

count the number of times this feature has appeared in all categories

totals = 0

categories.each do |c|

totals += fcount(f,c)

end

calculate the weighted average

((weight * ap) + (totals * basicprob)) / (weight + totals)

end

def train(item, cat)

features = getfeatures(item)

features.each do |f|

incf(f, cat)

end

incc(cat)

end

end

37 / 52

script: NaiveBayes Class
naive baysian classifier

class NaiveBayes < Classifier

def initialize

super # inherit from parent class

@thresholds = {}

end

def docprob(item, cat)

features = getfeatures(item)

multiply the probabilities of all the features together

p = 1.0

features.each do |f|

p *= weightedprob(f, cat)

end

return p

end

def prob(item, cat)

catprob = Float(catcount(cat)) / totalcount

docprob = docprob(item, cat)

return docprob * catprob

end

def classify(item, default=nil)

find the category with the highest probability

probs, max, best = {}, 0.0, nil

categories.each do |cat|

probs[cat] = prob(item, cat)

if probs[cat] > max

max = probs[cat]

best = cat

end

end

make sure the probability exceeds threshold*next best

...
38 / 52

debug: dumping the feature probabilities

internal states after the training:

fprob for "nobody": good:0.333 bad:0.000

fprob for "owns": good:0.333 bad:0.000

fprob for "the": good:1.000 bad:0.500

fprob for "water": good:0.333 bad:0.000

fprob for "quick": good:0.667 bad:0.500

fprob for "rabbit": good:0.333 bad:0.000

fprob for "jumps": good:0.667 bad:0.000

fprob for "fences": good:0.333 bad:0.000

fprob for "buy": good:0.000 bad:0.500

fprob for "pharmaceuticals": good:0.000 bad:0.500

fprob for "now": good:0.000 bad:0.500

fprob for "make": good:0.000 bad:0.500

fprob for "money": good:0.000 bad:0.500

fprob for "online": good:0.000 bad:0.500

fprob for "casino": good:0.000 bad:0.500

fprob for "brown": good:0.333 bad:0.000

fprob for "fox": good:0.333 bad:0.000

39 / 52

previous exercise: Dijkstra algorithm
▶ read a topology file, and compute shortest paths

$ cat topology.txt

a - b 5

a - c 8

b - c 2

b - d 1

b - e 6

c - e 3

d - e 3

c - f 3

e - f 2

d - g 4

e - g 5

f - g 4

$ ruby dijkstra.rb -s a topology.txt

a: (0) a

b: (5) a b

c: (7) a b c

d: (6) a b d

e: (9) a b d e

f: (10) a b c f

g: (10) a b d g

$

5
2

8

3

3

2
4

4

1 3

6

5

a

b

c

d

e

f

g

40 / 52

example application: shortest path for JR train

▶ Yamanote-line, part of Chuo/Sobu-lines (inter-station
distance: 100m)

$ cat jr.txt

JR Yamanote line

Osaki - Gotanda 09

Gotanda - Meguro 12

Meguro - Ebisu 15

Ebisu - Shibuya 16

Shibuya - Harajuku 12

Harajuku - Yoyogi 15

...

Tamachi - Shinagawa 22

Shinagawa - Osaki 20

JR Chuo line

Tokyo - Kanda 13

Kanda - Ochanomizu 13

Ochanomizu - Suidobashi 08

...

Sendagaya - Yoyogi 10

Yoyogi - Shinjuku 07

JR Sobu line

Ochanomizu - Akihabara 09

Akihabara - Asakusabashi 11

$

$ ruby dijkstra.rb -s Shinagawa -d Ochanomizu jr.txt

Ochanomizu: (94) Shinagawa Tamachi Hamamatsucho Shinbashi Yurakucho Tokyo Kanda Ochanomizu

$ ruby dijkstra.rb -s Tokyo -d Shinjuku jr.txt

Shinjuku: (103) Tokyo Kanda Ochanomizu Suidobashi Iidabashi Ichigaya Yotsuya Shinanomachi Sendagaya Yoyogi Shinjuku

$

41 / 52

Dijkstra algorithm

1. cost initialization: start_node = 0, other_nodes = infinity

2. loop:

(1) find the node with the lowest cost among the unfinished nodes,

and fix its cost

(2) update the cost of its neighbors

dijkstra algorithm

42 / 52

sample code (1/4)

dijkstra’s algorithm based on the pseudo code in the wikipedia

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

#

require ’optparse’

source = nil # source of spanning-tree

destination = nil # destination

OptionParser.new {|opt|

opt.on(’-s VAL’) {|v| source = v}

opt.on(’-d VAL’) {|v| destination = v}

opt.parse!(ARGV)

}

INFINITY = 0x7fffffff # constant to represent a large number

43 / 52

sample code (2/4)

read topology file and initialize nodes and edges

each line of topology file should be "node1 (-|->) node2 weight_val"

nodes = Array.new # all nodes in graph

edges = Hash.new # all edges in graph

ARGF.each_line do |line|

s, op, t, w = line.split

next if line[0] == ?# || w == nil

unless op == "-" || op == "->"

raise ArgumentError, "edge_type should be either ’-’ or ’->’"

end

weight = w.to_i

nodes << s unless nodes.include?(s) # add s to nodes

nodes << t unless nodes.include?(t) # add t to nodes

add this to edges

edges[s] ||= {} # if edges[s] doesn’t exit, initialize with empty hash

edges[s][t] = weight

if this edge is undirected, add the reverse directed edge

if (op == "-")

edges[t] ||= {}

edges[t][s] = weight

end

end

sanity check

if source == nil

raise ArgumentError, "specify source_node by ’-s source’"

end

unless nodes.include?(source)

raise ArgumentError, "source_node(#{source}) is not in the graph"

end

44 / 52

sample code (3/4)

create and initialize 2 hashes: distance and previous

dist = Hash.new # distance for destination

prev = Hash.new # previous node in the best path

nodes.each do |i|

dist[i] = INFINITY # Unknown distance function from source to v

prev[i] = -1 # Previous node in best path from source

end

run the dijkstra algorithm

dist[source] = 0 # Distance from source to source

while (nodes.length > 0)

u := vertex in Q with smallest dist[]

u = nil

nodes.each do |v|

if (!u) || (dist[v] < dist[u])

u = v

end

end

if (dist[u] == INFINITY)

break # all remaining vertices are inaccessible from source

end

nodes = nodes - [u] # remove u from Q

update dist[] of u’s neighbors

edges[u].keys.each do |v|

alt = dist[u] + edges[u][v]

if (alt < dist[v])

dist[v] = alt

prev[v] = u

end

end

end

45 / 52

sample code (4/4)

print the shortest-path spanning-tree

dist.sort.each do |v, d|

if destination is specified, skip other destinations

next if destination && destination != v

print "#{v}: " # destination node

if d != INFINITY

print "(#{d}) " # distance

construct path from dest to source

i = v

path = "#{i}"

while prev[i] != -1 do

path.insert(0, "#{prev[i]} ") # prepend previous node

i = prev[i]

end

puts "#{path}" # print path from source to dest

else

puts "unreachable"

end

end

46 / 52

assignment 2: twitter data analysis
▶ purpose: processing realworld big data
▶ data sets:

▶ twitter data for about 40M users by Kwak et al. in July 2009
▶ http://an.kaist.ac.kr/traces/WWW2010.html

▶ twitter degrees.zip (164MB, 550MB uncompressed)
▶ user id, followings, followers

▶ numeric2screen.zip (365MB, 756MB uncompressed)
▶ user id, screen name

▶ items to submit
1. CCDF plot of the distributions of twitter users’

followings/followers
▶ log-log plot, the number of followings/followers on X-axis

2. list of the top 30 users by the number of followers
▶ rank, user id, screen name, followings, followers

3. optional
▶ other analysis of your choice

4. discussion
▶ describe what you observe from the data

▶ submission: upload your report in the PDF format via
SFC-SFS

▶ submission due: 2016-06-21 (Tue) 47 / 52

twitter data sets
twitter degrees.zip (164MB, 550MB uncompressed)
id followings followers

12 586 1001061

13 243 1031830

14 106 8808

15 275 14342

16 273 218

17 192 6948

18 87 6532

20 912 1213787

21 495 9027

22 272 3791

...

numeric2screen.zip (365MB, 756MB uncompressed)
id screenname

12 jack

13 biz

14 noah

15 crystal

16 jeremy

17 tonystubblebine

18 Adam

20 ev

21 dom

22 rabble

...

48 / 52

items to submit

CCDF plot

▶ log-log plot, the number of followings/followers on X-axis

▶ plot the 2 distributions in a single graph

list of the top 30 users by the number of followers

▶ rank, user id, screen name, followings, followers

▶ you need to sort and merge 2 files

rank id screenname followings followers

1 19058681 aplusk 183 2997469

2 15846407 TheEllenShow 26 2679639

3 16409683 britneyspears 406238 2674874

4 428333 cnnbrk 18 2450749

5 19397785 Oprah 15 1994926

6 783214 twitter 55 1959708

...

49 / 52

sort command

sort command: sorts lines in a text file

$ sort [options] [FILE ...]

▶ options (relevant to the assignment)
▶ -n : compare according to string numerical value
▶ -r : reverse the result of comparisons
▶ -k POS1[,POS2] : start a key at POS1, end it at POS 2

(origin 1)
▶ -t SEP : use SEP instead of non-blank as the field-separator
▶ -m : merge already sorted files
▶ -T DIR : use DIR for temporary files

example: sort “file” using the 3rd field as numeric value in the
reverse order , use “/usr/tmp” for temporary files

$ sort -nr -k3,3 -T/usr/tmp file

50 / 52

summary

Class 10 Anomaly detection and machine learning

▶ Anomaly detection

▶ Machine Learning

▶ SPAM filtering and Bayes theorem

▶ exercise: naive Bayesian filter

51 / 52

next class

Class 11 Data Mining (6/27)

▶ Pattern extraction

▶ Classification

▶ Clustering

▶ exercise: clustering

52 / 52

