
Internet Measurement and Data Analysis (4)

Kenjiro Cho

2016-05-02

review of previous class

Class 3 Data recording and log analysis (4/25)

▶ Data format

▶ Log analysis methods

▶ exercise: log data and regular expression

2 / 41

today’s topics

Class 4 Distribution and confidence intervals

▶ Normal distribution

▶ Confidence intervals and statistical tests

▶ Distribution generation

▶ exercise: confidence intervals

▶ assignment 1

3 / 41

normal distribution (1/2)
▶ also known as gaussian distribution
▶ N(µ, σ): defined by 2 parameters: µ:mean, σ:standard

deviation
▶ sum of random variables follows normal distribution
▶ standard normal distribution: µ = 0, σ = 1
▶ in normal distribution

▶ 68% within (mean− stddev,mean+ stddev)
▶ 95% within (mean− 2 ∗ stddev,mean+ 2 ∗ stddev)

0

0.2

0.4

0.6

0.8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

f(x)

x

exp(-x**2/2)mean
median

σ

68%

95% 4 / 41

normal distribution (2/2)
probability density function (PDF)

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2

cumulative distribution function (CDF)

F (x) =
1

2
(1 + erf

x− µ

σ
√
2
)

µ : mean, σ : standarddeviation

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

f(
x)

x

µ=0,σ2=1.0
µ=0,σ2=0.2
µ=0,σ2=5.0

µ=-2,σ2=0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

cd
f

x

µ=0,σ2=1.0
µ=0,σ2=0.2
µ=0,σ2=5.0

µ=-2,σ2=0.5

5 / 41

confidence interval

▶ confidence interval
▶ provides probabilistic bounds
▶ tells how much uncertainty in the estimate

▶ confidence level, significance level

Prob{c1 ≤ µ ≤ c2} = 1− α

(c1, c2) : confidence interval
100(1− α) : confidence level
α : significance level

▶ example: with 95% confidence, the population mean is
between c1 and c2

▶ traditionally, 95% and 99% are often used for confidence level

6 / 41

95% confidence interval
sample mean from normal distribution N(µ, σ) follows normal
distribution N(µ, σ/

√
n)

95% confidence interval corresponds to the following area in the
standard normal distribution

−1.96 ≤ x̄− µ

σ/
√
n
≤ 1.96

0 1.96-1.96

0.0250.025

N(0, 1)

standard normal distribution N(0, 1) 7 / 41

illustration of confidence interval

▶ confidence level 90% means 90% samples will contain
population mean in their confidence intervals

f(x)

confidence interval from sample 1
sample 2
sample 3
sample 4
sample 5
sample 6
sample 7
sample 8
sample 9
sample 10

µ

fails to include µ

8 / 41

confidence interval for mean
when sample size is large, confidence interval for population mean
is

x̄∓ z1−α/2 s/
√
n

here, x̄:sample mean, s:sample standard deviation, n:sample
size,α:significance level
z1−α/2:(1− α/2)-quantile of unit normal variate

▶ for 95% confidence level: z1−0.05/2 = 1.960
▶ for 90% confidence level: z1−0.10/2 = 1.645
▶ example: 5 measurements of TCP throughput

▶ 3.2, 3.4, 3.6, 3.6, 4.0Mbps
▶ sample mean x̄ = 3.56Mbps, sample standard deviation

s = 0.30Mbps
▶ 95% confidence interval:

x̄∓ 1.96(s/
√
n) = 3.56∓ 1.960× 0.30/

√
5 = 3.56∓ 0.26

▶ 90% confidence interval:

x̄∓ 1.645(s/
√
n) = 3.56∓ 1.645× 0.30/

√
5 = 3.56∓ 0.22

9 / 41

confidence interval for mean and sample size

confidence interval becomes smaller as sample size increases

 54

 56

 58

 60

 62

 64

 66

 68

 70

 4 8 16 32 64 128 256 512 1024 2048

m
ea

su
re

m
en

ts

sample size

mean
95% confidence interval

confidence interval with varying sample size

10 / 41

confidence interval for mean when sample size is small
when sample size is small (< 30), confidence interval can be
constructed only if population has normal distribution

▶ (x̄− µ)/(s/
√
n) for samples from normal population follows

t(n− 1) distribution

x̄∓ t[1−α/2;n−1] s/
√
n

here, t[1−α/2;n−1]:(1− α/2)-quantile of a t-variate with (n− 1)
degree of freedom

t(n-1) density function

0 (x-u)/s

α/2

-t[1-α/2;n-1] +t[1-α/2;n-1]

α/21 − α

f(x)

(x-µ)/s

11 / 41

example: confidence interval for mean when sample size is
small

▶ example: in the previous TCP throughput measurement,
confidence interval should be calculated using t(n− 1)
distribution

▶ 95% confidence interval, n = 5: t[1−0.05/2,4] = 2.776

x̄∓ 2.776(s/
√
n) = 3.56∓ 2.776× 0.30/

√
5 = 3.56∓ 0.37

▶ 90% confidence interval, n = 5: t[1−0.10/2,4] = 2.132

x̄∓ 2.132(s/
√
n) = 3.56∓ 2.132× 0.30/

√
5 = 3.56∓ 0.29

12 / 41

other confidence intervals

▶ for population variance
▶ chi-square distribution with degree of freedom (n− 1)

▶ for ratio of sample variances
▶ F distribution with degree of freedom (n1 − 1, n2 − 1)

13 / 41

how to use confidence interval

applications

▶ provide confidence interval to show possible range of mean

▶ from sample mean and stddev, compute how many trials are
needed to satisfy a given confidence interval

▶ repeat measurement until a given confidence interval is
reached

14 / 41

sample size for determining mean
▶ how many observations n is required to estimate population

mean with accuracy ±r% and confidence level 100(1− α)%?
▶ perform preliminary test to obtain sample mean x̄ and

standard deviation s
▶ for sample size n, confidence interval is x̄∓ z s√

n

▶ desired accuracy of r%

x̄∓ z
s√
n
= x̄(1∓ r

100
)

n = (
100zs

rx̄
)2

▶ example: by preliminary test for TCP throughput, the sample
mean is 3.56Mbps, sample standard deviation is 0.30Mbps.
how many observations will be required to obtain accuracy
(< 0.1Mbps) with 95% confidence?

n = (
100zs

rx̄
)2 = (

100× 1.960× 0.30

0.1/3.56× 100× 3.56
)2 = 34.6

15 / 41

inference and hypothesis testing

the purpose of hypothesis testing

▶ a method to statistically test a hypothesis on population using
samples

inference and hypothesis testing: both sides of the coin

▶ inference: predict a value to be within a range
▶ hypothesis testing: whether a hypothesis is accepted or

rejected
▶ make a hypothesis about population, compute if the

hypothesis falls within the 95% confidence interval
▶ accept the hypothesis if it is within the range
▶ reject the hypothesis if it is outside of the range

16 / 41

example: hypothesis testing

when flipping N coins, we have 10 heads. In this case, can we
accept a hypothesis of N = 36? (here, assume the distribution
follows normal distribution with µ = N/2, σ =

√
n/2)

▶ hypothesis: 10 heads for N = 36

▶ hypothesis testing for 95% confidence level

−1.96 ≤ x̄− µ

σ
≤ 1.96

−1.96 ≤ (x̄− 18)/3 ≤ 1.96 12.12 ≤ x̄ ≤ 23.88

10 is outside of the 95% confidence interval so that the hypothesis
of N = 36 is rejected

17 / 41

discarding outliers

outliers should not be discarded blindly. investigation needed,
which sometimes leads to new findings

▶ Chauvenet’s criterion: heuristic method to reject outliers
▶ calculate sample mean and standard deviation from sample

size n
▶ assuming normal distribution, determine the probability p of

suspected data point
▶ if n× p < 0.5, the suspicious data point may be discarded
▶ note: when n < 50, s is not reliable. the method should not

apply repeatedly

▶ example: 10 delay measurements: 4.6, 4.8, 4.4, 3.8, 4.5, 4.7,
5.8, 4.4, 4.5, 4.3 (sec). is it ok to discard 5.8sec?

▶ x̄ = 4.58, s = 0.51
▶ tsus =

xsus−x̄
s = 5.8−4.58

0.51 = 2.4, 2.4 times larger than s
▶ P (|x− x̄| > 2.4s) = 1−P (|x− x̄| < 2.4s) = 1−0.984 = 0.016
▶ n× p = 10× 0.016 = 0.16
▶ 0.16 < 0.5: we may discard 5.8sec

18 / 41

accuracy, precision and errors
accuracy: how close to true value
precision: uncertainty in data
error: difference from true value, range of uncertainty

f(x)

x

accurate, not precise
precise, not accurate

true
mean

19 / 41

various errors
measurement errors

▶ systematic errors (if conditions are identified, errors could be
corrected)

▶ instrument error, procedural error, personal bias

▶ random errors (noise: accuracy can be improved by repeating
measurement)

calculation errors

▶ round-off errors

▶ truncation errors

▶ loss of trailing digits

▶ cancellation of significant digits

▶ propagation of error

sampling errors

▶ when sampling is used, true value is usually unknown

▶ sampling errors: errors in estimating population characteristics
20 / 41

significant digits
significant digits of “1.23” is 3 (1.225 ≤ 1.23 < 1.235)
expressions

expressions significant digits
12.3 3
12.300 5
0.0034 2
1200 4 (vague, 1.200× 103)
2.34× 104 3

arithmetic
▶ use all the available digits during calculation

▶ for manual calculation, use one more digit

▶ apply the significant digits to the final value

basic rules
▶ addition/subtraction: use the smallest number of decimal

places
▶ 1.23 + 5.724 = 6.954 ⇒ 6.95

▶ multiplication/division: use the smallest number of significant
digits

▶ 4.23× 0.38 = 1.6074 ⇒ 1.6
21 / 41

previous exercise: web access log sample data

▶ apache log (combined log format)

▶ from a JAIST server, access log for 24 hours

▶ about 20MB (zip compressed), about 162MB after unzip

▶ 1/10 sampling
▶ client IP addresses are anonymized for privacy

▶ using “ipv6loganon –anonymize-careful”

access log for 24 hours:

http://www.iijlab.net/~kjc/classes/sfc2016s-measurement/sample_access_log.zip

22 / 41

sample data

117.136.16.0 - - [01/Oct/2013:23:59:58 +0900] "GET /project/morefont/liangqiushengshufaziti.apk \

HTTP/1.1" 200 524600 "-" "-" jaist.dl.sourceforge.net

218.234.160.0 - - [01/Oct/2013:23:59:59 +0900] "GET /pub/Linux/linuxmint/packages/dists/olivia/\

upstream/i18n/Translation-ko.xz HTTP/1.1" 404 564 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" \

ftp.jaist.ac.jp

119.80.32.0 - - [01/Oct/2013:23:59:59 +0900] "GET /project/morefont/xiongtuti.apk HTTP/1.1" 304 \

132 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Foxy/1; InfoPath.1)" \

jaist.dl.sourceforge.net

218.234.160.0 - - [02/Oct/2013:00:00:00 +0900] "GET /pub/Linux/linuxmint/packages/dists/olivia/\

import/i18n/Translation-en.gz HTTP/1.1" 404 562 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" \

ftp.jaist.ac.jp

117.136.0.0 - - [02/Oct/2013:00:00:00 +0900] "GET /project/morefont/xiaoqingwaziti.apk HTTP/1.1"\

200 590136 "-" "-" jaist.dl.sourceforge.net

123.224.224.0 - - [02/Oct/2013:00:00:00 +0900] "GET /pub/Linux/ubuntu/dists/raring/main/i18n/\

Translation-en.bz2 HTTP/1.1" 304 187 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" ftp.jaist.ac.jp

123.224.224.0 - - [02/Oct/2013:00:00:00 +0900] "GET /pub/Linux/ubuntu/dists/raring/multiverse/\

i18n/Translation-en.bz2 HTTP/1.1" 304 186 "-" "Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" \

ftp.jaist.ac.jp

124.41.64.0 - - [01/Oct/2013:23:59:58 +0900] "GET /ubuntu/pool/universe/s/shorewall6/\

shorewall6_4.4.26.1-1_all.deb HTTP/1.1" 200 435975 "-" "Wget/1.14 (linux-gnu)" ftp.jaist.ac.jp

...

240b:10:c140:a909:a949:4291:c02d:5d13 - - [02/Oct/2013:00:00:01 +0900] "GET /ubuntu/pool/main/m/\

manpages/manpages_3.52-1ubuntu1_all.deb HTTP/1.1" 200 626951 "-" \

"Debian APT-HTTP/1.3 (0.9.7.7ubuntu4)" ftp.jaist.ac.jp

...

23 / 41

previous exercise: plotting request counts over time

▶ use the sample data

▶ extract request counts and transferred bytes with 5 minutes
bins

▶ plot the results

% ruby parse_accesslog.rb sample_access_log > access-5min.txt

% more access-5min.txt

2013-10-01T20:00 1 1444348221

...

2013-10-01T23:55 215 1204698404

2013-10-02T00:00 2410 5607857319

2013-10-02T00:05 2344 3528532804

2013-10-02T00:10 2502 4354264670

2013-10-02T00:15 2555 5441105487

...

% gnuplot

gnuplot> load ’access.plt’

24 / 41

extract request counts and transferred bytes with 5
minutes bins

#!/usr/bin/env ruby

require ’date’

regular expression for apache common log format

host ident user time request status bytes

re = /^(\S+) (\S+) (\S+) \[(.*?)\] "(.*?)" (\d+) (\d+|-)/

timebins = Hash.new([0, 0])

count = parsed = 0

ARGF.each_line do |line|

count += 1

if re.match(line)

host, ident, user, time, request, status, bytes = $~.captures

next unless request.match(/GET\s.*/) # ignore if the request is not "GET"

next unless status.match(/2\d{2}/) # ignore if the status is not success (2xx)

parsed += 1

parse timestamp

ts = DateTime.strptime(time, ’%d/%b/%Y:%H:%M:%S’)

create the corresponding key for 5-minutes timebins

rounded = sprintf("%02d", ts.min.to_i / 5 * 5)

key = ts.strftime("%Y-%m-%dT%H:#{rounded}")

count by request and byte

timebins[key] = [timebins[key][0] + 1, timebins[key][1] + bytes.to_i]

else

match failed

$stderr.puts("match failed at line #{count}: #{line.dump}")

end

end

timebins.sort.each do |key, value|

puts "#{key} #{value[0]} #{value[1]}"

end

$stderr.puts "parsed:#{parsed} ignored:#{count - parsed}" 25 / 41

plot graphs of request counts and transferred bytes

 0
 2
 4
 6
 8

 10
 12
 14

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

re
qu

es
ts

/s
ec

time (5-minute interval)

requests

 0
 50

 100
 150
 200
 250
 300
 350

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

tr
af

fic
 (

M
bp

s)

time (5-minute interval)

traffic

26 / 41

gnuplot script

▶ put 2 graphs together using multiplot

set xlabel "time (5-minute interval)"

set xdata time

set format x "%H:%M"

set timefmt "%Y-%m-%dT%H:%M"

set xrange [’2013-10-02T00:00’:’2013-10-02T23:55’]

set key left top

set multiplot layout 2,1

set yrange [0:14]

set ylabel "requests/sec"

plot "access-5min.txt" using 1:($2/300) title ’requests’ with steps

set yrange [0:350]

set ylabel "traffic (Mbps)"

plot "access-5min.txt" using 1:($3*8/300/1000000) title ’traffic’ with steps

unset multiplot

27 / 41

exercise: generating normally distributed random numbers
▶ generating pseudo random numbers that follow the normal distribution

▶ write a program to generate normally distributed random
numbers with mean u and standard deviation s, using a
uniform random number generator function (e.g., rand in ruby)

▶ plotting a histogram

▶ generate random numbers that follow the standard normal
distribution, plot the histogram to confirm the standard normal
distribution.

▶ computing confidence intervals

▶ observe confidence interval changes according to sample size.
use the normally distributed random number generator to
produce 10 sets of normally distributed random numbers with
mean 60 and standard deviation 10. sample size n = 4, 8, 16,
32, 64, 128, 256, 512, 1024, 2048

▶ compute the confidence interval of the population mean from
each sample set.
use confidence level 95% and confidence interval ”±1.960 s√

n
”.

plot the results of 10 sets in a single graph. plot sample size n
on the X-axis in log-scale and mean and confidence interval on
the Y-axis in linear scale 28 / 41

box-muller transform

basic form: creates 2 normally distributed random variables, z0 and
z1, from 2 uniformly distributed random variables, u0 and u1, in
(0, 1]

z0 = R cos(θ) =
√

−2 lnu0 cos(2πu1)

z1 = R sin(θ) =
√

−2 lnu0 sin(2πu1)

polar form: approximation without trigonometric functions
u0 and u1: uniformly distributed random variables in [−1, 1],
s = u20 + u21 (if s = 0 or s ≥ 1, re-select u0, u1)

z0 = u0

√
−2 ln s

s

z1 = u1

√
−2 ln s

s

29 / 41

random number generator code by box-muller transform
usage: box-muller.rb [n [m [s]]]

n = 1 # number of samples to output

mean = 0.0

stddev = 1.0

n = ARGV[0].to_i if ARGV.length >= 1

mean = ARGV[1].to_i if ARGV.length >= 2

stddev = ARGV[2].to_i if ARGV.length >= 3

function box_muller implements the polar form of the box muller method,

and returns 2 pseudo random numbers from standard normal distribution

def box_muller

begin

u1 = 2.0 * rand - 1.0 # uniformly distributed random numbers

u2 = 2.0 * rand - 1.0 # ditto

s = u1*u1 + u2*u2 # variance

end while s == 0.0 || s >= 1.0

w = Math.sqrt(-2.0 * Math.log(s) / s) # weight

g1 = u1 * w # normally distributed random number

g2 = u2 * w # ditto

return g1, g2

end

box_muller returns 2 random numbers. so, use them for odd/even rounds

x = x2 = nil

n.times do

if x2 == nil

x, x2 = box_muller

else

x = x2

x2 = nil

end

x = mean + x * stddev # scale with mean and stddev

printf "%.6f\n", x

end 30 / 41

plot a histogram of normally distributed random numbers
▶ plot a histogram of random numbers following the standard

normal distribution, and confirm that they are normally
distributed

▶ generate 10,000 random numbers from the standard normal
distribution, use bins with one decimal place for the histogram

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-4 -3 -2 -1 0 1 2 3 4

f(
x)

x 31 / 41

plotting a histogram

▶ plot a histogram using bins with one decimal place

#

create histogram: bins with 1 digit after the decimal point

#

re = /(-?\d*\.\d+)/ # regular expression for input numbers

bins = Hash.new(0)

ARGF.each_line do |line|

if re.match(line)

v = $1.to_f

round off to a value with 1 digit after the decimal point

offset = 0.5 # for round off

offset = -offset if v < 0.0

v = Float(Integer(v * 10 + offset)) / 10

bins[v] += 1 # increment the corresponding bin

end

end

bins.sort{|a, b| a[0] <=> b[0]}.each do |key, value|

puts "#{key} #{value}"

end

32 / 41

plotting a histogram of the standard normal distribution

set boxwidth 0.1

set xlabel "x"

set ylabel "f(x)"

plot "box-muller-hist.txt" using 1:($2/1000) with boxes notitle, \

1/sqrt(2*pi)*exp(-x**2/2) notitle with lines linetype 3

note: probability density function (PDF) of standard normal distribution

f(x) =
1

√
2π

e−x2/2

to plot a histogram

$ ruby box-muller.rb 10000 > box-muller-data.txt

$ ruby box-muller-hist.rb box-muller-data.txt > box-muller-hist.txt

then, use “box-muller-hist.plt” for plotting

33 / 41

the confidence interval of sample mean and sample size
the confidence interval becomes narrower as the sample size
increases

 54

 56

 58

 60

 62

 64

 66

 68

 70

 4 8 16 32 64 128 256 512 1024 2048

m
ea

su
re

m
en

ts

sample size

mean
95% confidence interval

the confidence interval of sample mean and sample size

34 / 41

plotting the confidence intervals

to make data

$ ruby box-muller.rb 4 60 10 | ruby conf-interval.rb > conf-interval.txt

$ ruby box-muller.rb 8 60 10 | ruby conf-interval.rb >> conf-interval.txt

$ ruby box-muller.rb 16 60 10 | ruby conf-interval.rb >> conf-interval.txt

...

$ ruby box-muller.rb 2048 60 10 | ruby conf-interval.rb >> conf-interval.txt

then, use “conf-interval.plt” for plotting

35 / 41

computing confidence intervals

regular expression to read data

re = /^(\d+(\.\d+)?)/

z95 = 1.960 # z_{1-0.05/2}

z90 = 1.645 # z_{1-0.10/2}

sum = 0.0 # sum of data

n = 0 # the number of data

sqsum = 0.0 # su of squares

ARGF.each_line do |line|

if re.match(line)

v = $1.to_f

sum += v

sqsum += v**2

n += 1

end

end

mean = sum / n # mean

var = sqsum / n - mean**2 # variance

stddev = Math.sqrt(var) # standard deviation

se = stddev / Math.sqrt(n) # standard error

ival95 = z95 * se # intarval/2 for 95% confidence level

ival90 = z90 * se # intarval/2 for 90% confidence level

print n mean stddev ival95 ival90

printf "%d %.2f %.2f %.2f %.2f\n", n, mean, stddev, ival95, ival90

36 / 41

plotting confidence intervals

set logscale x

set xrange [2:4192]

set key bottom

set xtics (4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048)

set grid ytics

set xlabel "sample size"

set ylabel "measurements"

plot "conf-interval.txt" title "mean" with lines, \

"conf-interval.txt" using 1:2:4 title "95% confidence interval" with yerrorbars lt 3

37 / 41

assignment 1: the finish time distribution of a marathon
▶ purpose: investigate the distribution of a real-world data set

▶ data: the finish time records from honolulu marathon 2015
▶ http://www.pseresults.com/events/741/results
▶ the number of finishers: 21,554

▶ items to submit

1. mean, standard deviation and median of the total finishers, male finishers,
and female finishers

2. the distributions of finish time for each group (total, men, and women)
▶ plot 3 histograms for 3 groups
▶ use 10 minutes for the bin size
▶ use the same scale for the axes to compare the 3 plots

3. CDF plot of the finish time distributions of the 3 groups

▶ plot 3 groups in a single graph
4. discuss differences in finish time between male and female. what can you

observe from the data?

5. optional

▶ other analysis of your choice (e.g., discussion on differences
among age groups)

▶ submission format: a single PDF file including item 1-5
▶ submission method: upload the PDF file through SFC-SFS
▶ submission due: 2016-05-17

38 / 41

honolulu marathon data set
data format (compacted to fit in the slide)

Chip Cat Cat Gndr Gndr

Place Time Number Lname Fname Country Category Place Total 5K 10K 40K Place Total Pace

--- ---------------------

1 2:11:43 3 Kiprotich Filex KEN MElite 1 5 16:07 31:40 ... 2:04:48 1 11346 5:02

2 2:12:46 1 Chebet Wilson KEN MElite 2 5 16:07 31:41 ... 2:05:57 2 11346 5:04

3 2:13:24 8 Limo Daniel KEN MElite 3 5 16:06 31:41 ... 2:06:13 3 11346 5:06

4 2:15:27 6 Kwambai Robert KEN MElite 4 5 16:08 31:41 ... 2:07:29 4 11346 5:10

5 2:18:36 4 Mungara Kenneth KEN MElite 5 5 16:07 31:40 ... 2:09:42 5 11346 5:18

6 2:27:58 11 Neuschwander Florian DEU M30-34 1 1241 17:46 34:50 ... 2:20:31 6 11346 5:39

7 2:28:34 F1 Chepkirui Joyce KEN WElite 1 7 16:53 33:21 ... 2:20:56 1 10207 5:40

8 2:28:42 28803 Takahashi Koji JPN M25-29 1 974 16:54 33:22 ... 2:20:52 7 11346 5:41

9 2:28:55 F5 Karimi Lucy KEN WElite 2 7 16:54 33:22 ... 2:20:58 2 10207 5:41

10 2:29:44 F6 Ochichi Isabella KEN WElite 3 7 16:53 33:22 ... 2:21:46 3 10207 5:43

...

▶ Chip Time: finish time

▶ Number: bib number

▶ Category: MElite, WElite, M15-19, M20-24, ..., W15-29, W20-24, ...

▶ note: 2 runners have ”No Age” for Category, and num:18035
doesn’t have cat/gender totals and its cat/gender placements
are not reflected to the following entries

▶ Country: 3-letter country code: e.g., JPN, USA

▶ check the number of the total finishers when you extract the finishers

39 / 41

summary

Class 4 Distribution and confidence intervals

▶ Normal distribution

▶ Confidence intervals and statistical tests

▶ Distribution generation

▶ exercise: confidence intervals

▶ assignment 1

40 / 41

next class

Class 5 Diversity and complexity (5/9)

▶ Long tail

▶ Web access and content distribution

▶ Power-law and complex systems

▶ exercise: power-law analysis

41 / 41

